Accelerated Discovery of Multi-Phase Alloys Through Machine Learning Surrogate Models
Team: #13 Samuel Price
- Program: Materials Science and Engineering
- Course:
Project Description:
In this senior design project, a comprehensive, element-agnostic approach for identifying
promising new alloys is presented. I demonstrate that machine learning algorithms can
be used to create accurate surrogate models of CALPHAD and can rapidly assess the phase stability of
millions of candidate alloys. This approach can greatly expedite the alloy design process.