Kernel Density Graphs

Team: KDG

Program:

Biomedical Engineering, Computer Science

Project Description:

Classical machine learning (ML) algorithms yield overconfident predictions when given out-of-distribution (OOD) data. Neural networks and random forest algorithms divide the decision space into polytopes that extend infinitely beyond the training data, and learn affine transforms over them. This leads to overconfident predictions in OOD regions. We rectify this by learning Gaussian kernels over the polytopes learnt by these algorithms. Then, we estimate appropriate confidence values on the basis of class conditional posterior estimates.

Team Members

    [foreach 357]

  • [if 397 not_equal=””][/if 397][395]

  • [/foreach 357]

Project Mentors, Sponsors, and Partners

Course Faculty

    [foreach 429]

  • [if 433 not_equal=””][/if 433][431]

  • [/foreach 429]

Project Links

Additional Project Information

Project Photo

Project Photo Caption:

Project Video