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Spatially-resolved optoelectronic property maps allow us to study 
how various kinds of macroscopic defects affect the performance of 
photovoltaic devices. While this type of scan allows us to exceed 
the limitations of single point measurements, the practice greatly 
increases the amount of data obtained and adds complexity to the 
physical setup. For a complete picture of the underlying 
performance of a device, we must perform multiple types of scans 
including photoluminescence, transient photovoltage, transient 
photocurrent, and current-voltage curves. 

If it is possible to find correlations between the above-
mentioned parameters and a single measurement type, then each 
photovoltaic device could be completely characterized by simply 
performing a single kind of scan. We propose the use of machine 
learning to achieve this goal. 

In this project, we used machine learning models to assist in the 
characterization process of PbS colloidal quantum dot (CQD) solar 
cells. We performed spatially-resolved optoelectronic 
measurements and used experimental data to train a neural 
network to automatically predict several materials parameters. 

Our preliminary work demonstrated that machine learning models 
can be used to expedite the characterization process of photovoltaic 
devices. The neural network was able to accurately predict various 
complex materials parameters solely using current-voltage curves. In 
the future, we plan to use the decoder of our model to generate 
datasets from noise, and we would also like to expand our current 
setup to include additional types of measurements.

We characterized PbS CQD solar cells, Figure 1, using the 
apparatus shown in Figure 1. The device structure consists of a 
glass substrate, fluorine-doped tin oxide layer, zinc oxide layer, PbS
CQD absorbing layer, PbS-EDT CQD hole transport layer, and gold 
top contact. Our scanning setup had a step size of 25 𝜇𝑚 and a 
scanning area of 2.05 𝑚𝑚×2.05 𝑚𝑚, corresponding to a grid of 82 
by 82 points. 

The photoluminescence (PL) curves were fit using a Gaussian 
model, and the transient photovoltage and photocurrent curves 
were fit to the convolution of a Gaussian impulse and exponential 
decay curve. 

We used experimental data to train the machine learning 
model abstracted in Figure 2. Using a single input vector (the 
current-voltage curve), we were able to produce an output vector 
containing the different materials parameters of interest. Two 
devices were used in the training process. The model was trained 
on one device, and then the model was used to predict the 
parameters for the other device. 

Results

Figure 2. 
Photoluminescence 
(red) for a single point 
in the scan fit to a 
Gaussian curve (blue).

Figure 3. Transient 
photovoltage (blue) for 
a single point in the 
scan fit to a Gaussian-
exponential decay 
convolution.

Figure 4. The measured transient photovoltage map (left) and predicted 
map generated by the neural network (right). 
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Figure 2. A schematic of the neural network architecture 
used for materials parameter extraction. Additional 
convolution and pooling layers may be added.

Figure 1. Scanning set up (left) and closer look at the PbS
CQD solar cell in the holder with probes attached (right).


