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Introduction

The extracellular electrophysiological recording is one of the well-established methodologies

tracking neuron activities in vivo, which harbor functional information pertaining to the workings

of the brain, thereby providing insights into the underlying mechanisms governing behavior

and mental processes. Despite the passage of several decades since its initial discovery and

utilization, extracellular electrophysiological recording continues to be extensively employed

and undergo continuous refinement in contemporary neuroscience research.

However, spike sorting, the process of accurately and precisely inferring spikes from extracellular

electrophysiological recordings, remains a critical challenge. As mathematically categorized as a

blind source separation problem, its unsupervised nature gives rise to interpretability ambiguities

and validation difficulties. The obstacles are further exacerbated by the growing trend towards

utilizing increasingly dense high-density multi-electrode arrays (MEA), e.g. Neuropixels probes

[4, 5], which typically comprise hundreds or thousands of channels.

Several spike sorting algorithms have been proposed over the years to tackle the spike sorting

challenge in high-density MEA (see Table 1). Notwithstanding the primary processing pipeline is

akin, nuances in configuration parameters, as well as the different strategies employed for spike

detection, feature extraction, and clustering, introduce distinct inherent biases unique to each

spike sorting algorithm. These biases significantly impact the outcomes and as a consequence,

lead to wide variations in sorting results when different algorithms are utilized.

Despite the fact of continuous emergence and advancement of spike sorting algorithms along

with their widespread adoption in recent research, surprisingly few studies have investigated

and compared these algorithms while evaluating their performances, and a lack of established

standards for spike sorting persists. Such circumstances can induce substantial perplexity among

researchers, given the plethora of spike sorting algorithm choices available. In fact, the laborious

and technically challenging nature of inter-algorithm comparisons results in the limitation for

many researchers to selecting only one single algorithm and subsequently adhering to it, thereby

leading to a fragmented software ecosystem that hinders reproducibility, benchmarking, and

collaborations.

To uniformly benchmark the performances of spike sorting algorithms, extracellular recording

simulation presents a promising avenue. Compared to real recording datasets, employing

simulated datasets has shown several advantages, including ground truth validation, various

parameter control for systematic evaluations, and cost-effectiveness.

Table 1. Current overview of spike sorting algorithms

Name Language Base Processor Clustering Algorithms

Kilosort2.5 MATLAB + CUDA GPU Scaled K-means clustering

Kilosort3 MATLAB + CUDA GPU Scaled K-means clustering

Kilosort4 Python + CUDA GPU Graph-based clustering

SpyKING CIRCUS Python CPU DPCLUS

JRCLUST MATLAB + CUDA GPU DPCLUS

IronClust MATLAB + CUDA GPU DPCLUS

HerdingSpikes2 Python CPU Mean shift

MountainSort5 Python CPU ISO-SPLIT

Tridesclous Python CPU sawchaincut, pruningshears

YASS Python + CUDA GPU MFM

Highlights

We conducted extracellular electrophysiological simulations to generate simulated recording

datasets for systematic evaluation of different spike sorting algorithms, especially paying

attention to different drift conditions.

We then applied several prevalent spike sorting algorithms to the simulated datasets and

compared their results with each other as well as with the ground truth settings during the

simulation.

Comparison results were summarized and discussed, highlighting the different biases of

various spike sorting algorithms.

Our study can provide useful guidance for researchers in selecting appropriate spike sorting

algorithms and may shed light on the improvements in the next-generation spike sorting

algorithms.
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Figure 1. Block diagram of Neurosim.

Evaluation
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Figure 2. Examples of ground truth validation. (a) Spike time agreement matrix between ground truth units and

detected units from Kilosort2.5. (b) Template waveform cosine similarity matrix between ground truth units and

detected units from Kilosort3.

Computation of spike time agreement score and waveform cosine similarity score between l-th
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Results

Spike time validation
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Figure 3. Evaluation of spike sorting algorithms on a simulated recording based on spike time agreement matrices.

The recording data used was simulated with fine-tuned parameters at comprehensive consideration of traditional

recording obstacles, including probe drifting, neuron bursting, spike diffeomorphism, recording jittering, noise, etc.

The precision (a) and recall (b) were computed at different matching thresholds on the spike time agreement matrices

from 1 to 0 to determine matching (true positive) between ground truth units and detected units. Precision is defined

as # true positive units divided by # ground truth units, and recall is defined as # true positive units divided by #

detected units. Note that a theoretically-perfect spike sorting algorithm should always keep precision = 1 and recall

= 1. (c) The number of true positive units vs. the number of false positive units at different detection thresholds.
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Figure 4. Evaluation of spike sorting algorithms on a simulated recording based on template waveform cosine

similarity matrices.

Conclusions

Kilosort biased towards ”over-splitting” and KS3 splitted even more aggressively than KS2.5,

achieving higher recall with the trade-off of lower precision. Yet, manual curation (mostly

merges rather than splits) can mitigate the side effects of lower precision.

Spike sorting algorithms except for Kilosort biased towards higher precision, paying more efforts

to guaranteeing the correctness of positive-reported units, at the cost of lower recall. They

have similar performance in extracting the template waveform shape.

Tridesclous showed good performance with both high precision and recall in extracting the

spike trains.
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