
Baseball Game and Umpire Crew Scheduling Optimization
Christopher Arena, Coco Cai, Logan Donaldson, James Ingram, Eli Katz*, Benjamin Keever, Justin Nam, Sam Oberly, Devon Osgood,

Chloe Warren*, Emily Zhai
Johns Hopkins University | Whiting School of Engineering | Baltimore, MD

Design Day 2021

The Johns Hopkins University Baseball Scheduling 
Optimization Research Group was launched in 2011 by Anton 
Dahbura and Donniell Fishkind. The group uses combinatorial 
optimization and combinatorial design, as well as state-of-the-
art software and computing resources, to create schedules for 
professional baseball. We have created season schedules and 
umpire crew schedules for the majority of the leagues in Minor 
League Baseball (MiLB) at all levels. Before we came on the 
scene, leagues in MiLB utilized very suboptimal, by-hand 
schedules which took weeks to create. Our group has become 
well-known throughout professional baseball for pioneering 
mathematical optimization in scheduling for leagues in MiLB.

Create optimized schedules for MiLB using mathematical 
modeling, combinatorial optimization and design, 
advanced software, and supercomputing resources.

Objectives

Introduction

Materials and Methods

1) We meet with league scheduling committees and leadership to 
determine the league’s scheduling rules and priorities. Part of this task is to 
help the leagues themselves quantify a good schedule and resolve the 
competing interests and goals into a single objective function.
2) An appropriate skeleton (“template”) is created, which includes gross 
features such as season midway point, off-day spread, holiday patterns, 
and division of the days into series units, etc. 
3) We model the league constraints using appropriate variables and 
constraints. Quadratic constraints are converted into linear ones. The goal 
is the formation of a binary integer linear program whose objective function 
reflects the “badness” of a feasible schedule. Matrices and vectors with the 
specific problem parameters are created by building and running a 
computer program.
4) The matrices and vectors with the specific parameters of the binary 
integer linear program representing the schedule optimization are fed into a 
state-of-the-art solver, running on a 160-core computer until an optimal 
solution is produced.
5) The output is distilled into VBA spreadsheets that clearly summarize the 
descriptive statistics of the created schedule, and highlight important 
features.
6) We meet with the league scheduling committee and leadership to tune 
the model, and we adjust the priorities if this is useful.

Our computers:
Ziggy is an SGI UV2000 System with 8x Intel E5-4650V2 processors (10 
cores each @ 2.4Ghz, 25M cache) and 256GB DDR3 1866MT/s Memory.
Chillywilly is a custom Penguin Computing system with 4x AMD Opteron 
6378 processors (16 cores each @ 3.3Ghz, 16MB cache) and 128GB 
DDR3 1600MT/s Memory.

Results

Conclusion
Our methods have proven to be effective and highly 
adaptable. Future directions include advancing the state 
of the art in season scheduling and umpire crew 
scheduling for professional baseball leagues.

Umpire Crew Scheduling –
Umpires are responsible for enforcing the rules of the game on the field and adjudicating all aspects of the 
game. There are half as many umpire crews as teams in a league. Umpire crew scheduling is built on the 
season schedule for the league, and the requirements and priorities of the crew schedule vary somewhat 
from league to league. Standard requirements include some of the following:

•Crew travel should be minimized;
•Differences between total travel of different crews should not be extreme;
•Crews are to avoid umpiring that involves the same team two series in a row;
•The number of times a Crew sees each team should be in a fixed range of values;
•The number of times a Crew visits each stadium should be in a fixed range of values;
•Crews cannot travel more than 500 miles without an off day;
•Crew travel patterns should be as sensible as possible to minimize ``ping-ponging” and other negative 
patterns specified by the league;

Figure 2— Diamond Dollars for Season Scheduling
In the Diamond Dollars concept, each team is given a fixed number of tokens, or chips, to assign to days of the season that they would prefer to be 
home or away.  The number of chips a team places on a day reflects the importance of that request.  A team could in theory place all of its chips on 
one day of the season, or they could spread the chips around the days of the season.  Diamond Dollars supplement the other league and team 
constraints and are not intended to supersede or interfere with them.  The group came up with a way of adjusting the priority of Diamond Dollars 
relative to the other constraints for the season.  Surprisingly to many, the optimization was able to satisfy over 75% of the team Diamond Dollar 
preferences without disrupting the overall quality of the league schedule.  The system was especially effective at identifying team requests that were 
complementary to the rest of the constraints.  The Carolina League adopted the SAL Bucks/Diamond Dollars system for use in one of their recent 
schedules.

Figure 3a,b— Constraint modeling, very simplified examples 
Modeling is done through Binary Integer Linear Programming. BIP is used to solve a system of binary linear inequalities. The decision variables are 
constructed as follows:
𝑋!,#,$ where the subscript i is series index, j is team index, and k is stadium index. 
𝑋!,#,$ = 1 would indicate that team j is playing team k at team k’s stadium during series slot i. 
The constraints are designed to enforce the league requirements and priorities.
Artificial variables are created as needed to allow penalized violations. This is important, as there is no perfect schedule, and there are always 
competing goals that need to be optimized.

3a) Every team must have a specified number of home games: For each team, the number of games played at home is n, with an allowance of 
deviation by one game at a penalty, enforced through an artificial variable.

3b) Every game is home versus visitor: We iterate through teams within stadiums within slots. We add to the iterative count of req because we are 
adding an equality constraint. Within our iteration over teams, we are seeing that if the team is at its stadium, then there should be another team 
there as well and that if it is not, there should be no teams there. 

Figure 4 – Appalachian Umpire Crew Schedule
Due to its compact size, travel distance constraints are less concerning when developing 
Appalachian League umpire schedules. Apart from penalizing consecutive 180-mile trips, the 
optimization is free to prioritize each umpire crew’s distribution amongst the teams resulting in 
some particularly pretty schedules. 
For instance, in the above example, the total number of games each crew sees each club is near 
uniform. The largest discrepancy, a mere four games, occurs in Crew 4, which sees Princeton 8 
times and Elizabethton 12 times. 
Also, note that this uniformity was achieved without the implementation of an explicit constraint, 
which penalized large discrepancies between the number of times a crew saw each team. Rather, 
this distribution arose naturally as a byproduct of setting upper and lower bounds on the number 
of times each crew should see each team; and then requiring crews to move around semi-
frequently.
This schedule was adopted immediately without tweaks. In general, leagues have the option of 
adjusting their requirements and priorities and tradeoffs in response to a schedule presented to 
them.

Figure 5 – Future Directions
Currently under development is a new scheduling-making paradigm utilizing machine learning rather than 
binary integer linear programming. The machine learning framework involves incorporating analogous concepts 
to that of the program AlphaGo -- the artificial intelligent version that was developed by DeepMind and 
acquired by Google. The scheduling Python framework is like that of games, which determines which scheduling 
moves are optimal in the immediate and long term. More specifically, within the game, each team is 
represented by a machine learning agent. These agents then take sequential turns. A turn consists of selecting a 
series and choosing whether to be home or away. If a team chooses to be away, they may also choose their 
opponent. Turns are evaluated based on how well they adhere to the scheduling constraints. The game ends 
when every series is filled, and a schedule is created. The goal is to leverage machine learning to perform robust 
scheduling as well as determine which of these moves are most beneficial. In doing so, statistical analysis and 
tree-based methodologies are explored to determine which avenues and lines of play are worth evaluating and 
pursuing. The figure above shows part of an example team’s schedule resulting from a recent simulation.

* Team student leaders


