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Introduction Results

The Johns Hopkins University Baseball Scheduling

Total Mileage: 2,527 Total Mileage: 3,122 Total Mileage: 2,780 Total Mileage: 3,006 Total Mileage: 2,568
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Create optimized schedules for MiLB using mathematical Figure 4 — Appalachian Umpire Crew Schedule
. . . . . . 1 e e e Due to its compact size, travel distance constraints are less concerning when developing
mOdellng, combinatorial Opt|m|zat|0n and deS|gn, - Appalachian League umpire schedules. Apart from penalizing consecutive 180-mile trips, the
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optimization is free to prioritize each umpire crew’s distribution amongst the teams resulting in
some particularly pretty schedules.

For instance, in the above example, the total number of games each crew sees each club is near
uniform. The largest discrepancy, a mere four games, occurs in Crew 4, which sees Princeton 8
times and Elizabethton 12 times.

Also, note that this uniformity was achieved without the implementation of an explicit constraint,
which penalized large discrepancies between the number of times a crew saw each team. Rather,
this distribution arose naturally as a byproduct of setting upper and lower bounds on the number
of times each crew should see each team; and then requiring crews to move around semi-
frequently.

This schedule was adopted immediately without tweaks. In general, leagues have the option of
adjusting their requirements and priorities and tradeoffs in response to a schedule presented to

advanced software, and supercomputing resources.

Materials and Methods

1) We meet with league scheduling committees and leadership to
determine the league’s scheduling rules and priorities. Part of this task is to

. Figure 2— Diamond Dollars for Season Scheduling them.
help the. Iea_lgues themselves q%‘a”t'fy a gOOd S_Che.dUIe an(.j resolve the In the Diamond Dollars concept, each team is given a fixed number of tokens, or chips, to assign to days of the season that they would prefer to be
Competmg interests and goals Into a Smgle ObJeCtlve function. home or away. The number of chips a team places on a day reflects the importance of that request. A team could in theory place all of its chips on
2) An appropriate skeleton (“template”) is Created, which includes gross one day of the season, or they could spread the chips around the days of the season. Diamond Dollars supplement the other league and team
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and division of the days Into series units, etc. preferences without disrupting the overall quality of the league schedule. The system was especially effective at identifying team requests that were :
3) \We model the |eague constraints using appropriate variables and complementary to the rest of the constraints. The Carolina League adopted the SAL Bucks/Diamond Dollars system for use in one of their recent . -
constraints. Quadratic constraints are converted into linear ones. The goal schedules. :
IS the formation of a binary integer linear program whose objective function 4 sories e
T ” . . - . . - . for k=1l:nteams
reflec_:t_s the "badness” of a feasible schedule. I\/_Iat_rlces and veptors with the Vj, Y (#games in series ,)xi” — 5y Caintean: Figure 5 — Future Directions
specific problem parameters are created by building and running a i=1 for j=1:nteams | , _ - | |
¢ ; if j==k Currently under development is a new scheduling-making paradigm utilizing machine learning rather than
computer program. V ) i Sg’es (# . ) ) Aeq(req, (i-1)*nteamsknteams+(j-1)*nteams+(k-1)+1)=1; binary integer linear programming. The machine learning framework involves incorporating analogous concepts
: : L : ] — \Hgames in seriesi)x; .. — §. < —n else . | to that of the program AlphaGo -- the artificial intelligent version that was developed by DeepMind and
4) The matrlces and vectors Wlth_ the specific parame.ters OT the bmary_ s W /1 - aeq(req, (i-1)*nteams*nteams+(j-1)*nteams+(k-1)+1)=-1; acquired by Google. The scheduling Python framework is like that of games, which determines which scheduling
integer linear program representing the schedule optimization are fed into a T moves are optimal in the immediate and long term. More specifically, within the game, each team is
state-of-the-art solver, running on a 160-core computer until an optimal beq(req,1)=0; represented by a machine learning agent. These agents then take sequential turns. A turn consists of selecting a
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Solution Is producea. end opponent. Turns are evaluated based on how well they adhere to the scheduling constraints. The game ends
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features. constructed as follows: pursuing. The figure above shows part of an example team’s schedule resulting from a recent simulation.
_ _ _ _ X; j x Where the subscript i is series index, j is team index, and k is stadium index.
6) We meet with the league scheduling committee and leadership to tune X; ;x = 1 would indicate that team j is playing team k at team k’s stadium during series slot i. -
the model, and we adjust the priOritieS if this is useful. The constraints are designed to enforce the league requirements and priorities. COnCI USIOn
Artificial variables are created as needed to allow penalized violations. This is important, as there is no perfect schedule, and there are always
competing goals that need to be optimized. . .
o t PEINg 9 P Our methods have proven to be effective and highly
ur computers. - : . . . . .
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Ziggy iIs an SG| UV2000 System with 8x Intel E5-4650V2 pProcessors (1 0 deviation by one game at a penalty, enforced through an artificial variable. p ) g

of the art in season scheduling and umpire crew
Chillywilly is a custom Penguin Computing system with 4x AMD Opteron adding an equality constraint. Within our iteration over teams, we are seeing that if the team is at its stadium, then there should be another team SChedUIing for prOfeSSional baseba” |eagues_

cores each @ 2.4Ghz, 25M cache) and 256GB DDR3 1866MT/s Memory.

3b) Every game is home versus visitor: We iterate through teams within stadiums within slots. We add to the iterative count of req because we are

there as well and that if it is not, there should be no teams there.

6378 processors (16 cores each @ 3.3Ghz, 16MB cache) and 128GB
DDR3 1600MT/s Memory.




