Permutation Invariant Parking Assortments

Douglas M. Chen

© ${ }^{2}$, JOHNS HOPKINS
Whiting School of Engineering | Baltimore, MD
Design Day 2024

Introduction and Background

Definition (parking functions):

- Consider a one-way street with $n \in \mathbb{N}$ parking spots.
- There are n cars waiting to enter the street sequentially; each car has a parking spot preference
- When a car enters the street, it attempts to park in its preference; if it is occupied, the car continues driving down the street until it finds an unoccupied spot in which to park (if there is one).
If the cars' preferences allow them all to park, we say it is a parking function of length n.
Example: Let $\mathbf{x}=(1,2,2)$.

History:

- These structures were introduced by Konheim and Weiss in their study of hashing functions.
- For a fixed n, the number of parking functions is $(n+1)^{n-1}$; the proof is a classical argument that makes use of a "circular parking lot."

Definition (parking assortments):

- There are $n \in \mathbb{N}$ cars of assorted lengths $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{N}^{n}$ entering a one-way street containing $m=\sum_{i=1}^{n} y_{i}$ parking spots.
- The cars have parking preferences $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[m]^{n}$ and enter the street in order.
- For each i, car i starts looking for parking at its spot x_{i} and parks in the first y_{i} contiguously available spots thereafter (if there are any).
- If all cars are able to park under the preference list \mathbf{x}, we say that \mathbf{x} is a parking assortment for \mathbf{y}
- For a fixed \mathbf{y}, let $\mathrm{PA}_{n}(\mathbf{y})$ denote its set of parking assortments.

Note that any rearrangement of the entries of a parking function also results in a parking function. However, if $\mathbf{y}=(1,2,2)$, then $\mathbf{x}=(1,2,1)$ is a parking assortment, whereas its rearrangement $\mathbf{x}^{\prime}=(2,1,1)$ is neither.

Definition (invariance): Given $\mathbf{y} \in \mathbb{N}^{n}$ and $\mathbf{x} \in \mathrm{PA}_{n}(\mathbf{y})$, we say \mathbf{x} is an invariant parking assortment for \mathbf{y} if all of the rearrangements of \mathbf{x} are also in $\mathrm{PA}_{n}(\mathbf{y})$, Let $\mathrm{PA}_{n}(\mathbf{y})$ denote the set of invariant parking assortments for \mathbf{y} and $\mathrm{PA}_{n}^{\operatorname{inv}, 1}(\mathbf{y})$ denote the set of nondecreasing invariant parking assortments for \mathbf{y}.
Definition (degree and characteristic): Let $\mathbf{y} \in \mathbb{N}^{n}$. For any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $\mathrm{PA}_{n}^{\text {inv }}(\mathbf{y})$, the degree of x is given by

$$
\operatorname{deg} \mathbf{x}:=\left|\left\{i \in[n]: x_{i} \neq 1\right\}\right| .
$$

Moreover, the characteristic of \mathbf{y} is given by

$$
\chi(\mathbf{y}):=\max _{\mathbf{z} \in \mathrm{PA}_{n}^{\mathrm{in}}(\mathbf{y})} \operatorname{deg} \mathbf{z} .
$$

Notation (list operations): For $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{N}^{n}, k \in \mathbb{N}$, and $i \in[n]$, let $\mathbf{v}_{\hat{i}}:=\left(v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right) \in \mathbb{N}^{n-1}$ and $\mathbf{v}_{\mid}:=\left(v_{1}, v_{2}, \ldots, v_{i}\right) \in \mathbb{N}^{i}$.

Minimal Characteristic Results

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let y $=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{N}^{n}$. If $\chi(\mathbf{y})=0$, then $\chi\left(\mathbf{y}_{\left.\right|_{i}}\right)=0$ for all $i \in[n]$.
Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let y $=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{N}^{n}$. Then, $\chi(\mathbf{y})=0$ if and only if there does not exist $w \in \mathbb{N}_{>1}$ such that $\left(1^{n-1}, w\right) \in \operatorname{PA}_{n}^{\text {inv }}(\mathbf{y})$.
Remark: This is a concise characterization for $\mathbf{y} \in \mathbb{N}^{n}$ to have minimal degree in the sense that there are only n distinct permutations of ($1^{n-1}, w$), so we only need to perform $m n$ parking experiments.
Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let y = $\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{N}^{3}$. Then $\chi(\mathbf{y})=0$ if and only if $y_{1}<y_{2}, y_{1}<y_{3}$, and $y_{1}+y_{3} \neq y_{2}$. Theorem (Chen 2023): Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{N}^{n}$. If $\chi(\mathbf{y})=0$, then

$$
y_{1}<\min \left(y_{2}, y_{3}, \ldots, y_{n}\right) \quad \text { and } \quad y_{2} \neq \sum_{j \in[n] \backslash\{2\}} y_{j}
$$

Maximal Characteristic Results

Theorem (Chen 2023): Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{N}^{n}$. Then $\chi(\mathbf{y})=n-1$ if and only if

$$
y_{1} \geq y_{2} \quad \text { and } \quad y_{2}=y_{3}=\cdots=y_{n}
$$

Structural and Enumerative Results

Theorem (Chen 2023): Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{N}^{n}$ and $\mathbf{y}^{+}=\left(\mathbf{y}, y_{n+1}\right) \in \mathbb{N}^{n+1}$.

- If $\left(1^{n-d}, \mathbf{w}\right) \in \operatorname{PA}_{n}^{\text {inv }}(\mathbf{y})$, where $\mathbf{w} \in \mathbb{N}_{\gg}^{d}$, then $\left(1^{n-d+1}, \mathbf{w}_{\hat{i}}\right) \in \operatorname{PA}_{n}^{\text {inv }}(\mathbf{y})$ for all $i \in[d]$
- If $\mathbf{x} \in \mathrm{PA}_{n}^{\text {inv }}(\mathbf{y})$, then $(1, \mathbf{x}) \in \mathrm{PA}_{n+1}^{\mathrm{inv}}\left(\mathbf{y}^{+}\right)$. In particular, we have the embedding

$$
\eta: \begin{cases}\mathrm{PA}_{n}^{\mathrm{inv}, \uparrow}(\mathbf{y}) & \hookrightarrow \mathrm{PA}_{n+1}^{\mathrm{inv}, \uparrow}\left(\mathbf{y}^{+}\right) \\ \mathbf{x} & \mapsto(1, \mathbf{x}) .\end{cases}
$$

Theorem (Chen 2023): Let $\mathbf{y}=\left(b, a^{n-1}\right) \in \mathbb{N}^{n}$, where $n \geq 2$.

- If $a \mid b$ or $b>(n-1) a$, then $\mathbf{x} \in \operatorname{PA}_{n}^{\operatorname{inv}}(\mathbf{y})$ if and only if

$$
x_{(i)} \in\{1+(k-1) a: k \in[i]\} \quad \forall i \in[n] .
$$

Moreover,

$$
\left|\mathrm{PA}_{n}^{\operatorname{inv}}(\mathbf{y})\right|=(n+1)^{n-1} \quad \text { and } \quad\left|\mathrm{PA}_{n}^{\operatorname{inv}, \uparrow}(\mathbf{y})\right|=\frac{1}{n+1}\binom{2 n}{n}
$$

Otherwise, if $a \nmid b$ and $b<(n-1) a$, then $\mathbf{x} \in \operatorname{PA}_{n}^{\text {inv }}(\mathbf{y})$ if and only if

$$
x_{(i)} \in \begin{cases}\{1+(k-1) a: k \in[i]\} & \forall i \in\left[\left\lfloor\frac{b}{a}\right\rfloor+1\right. \\ \left\{1+(k-1) a: k \in\left[\left\lfloor\frac{b}{a}\right\rfloor+1\right]\right\} & \text { otherwise. }\end{cases}
$$

Moreover,

$$
\begin{aligned}
\left|\mathrm{PA}_{n}^{\operatorname{inv}}(\mathbf{y})\right| & =\sum_{j=0}^{n-\lfloor b / a\rfloor-1}(-1)^{j}\binom{n}{j}\left(n-\left\lfloor\frac{b}{a}\right\rfloor-1\right)^{j}(n-j+1)^{n-j-1} \text { and } \\
\left|\mathrm{PA}_{n}^{\mathrm{inv}, \uparrow}(\mathbf{y})\right| & =\frac{n-\lfloor b / a\rfloor+1}{n+1}\binom{n+\lfloor b / a\rfloor}{\lfloor b / a\rfloor} .
\end{aligned}
$$

Remark: Some of these enumerative formulas are deduced via two results: an enumerative result related to the theory of the Pitman-Stanley polytope and empirical distributions and a recursive formula for Catalan's triangle.

Towards Computing $\mathrm{PA}_{n}^{\operatorname{inv}}(\mathbf{y})$

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let $\mathbf{y}=\left(y_{1}, y_{2}\right) \in$ \mathbb{N}^{2}.

- $y_{1}<y_{2} \Longrightarrow \operatorname{PA}_{2}^{\text {inv }}(\mathbf{y})=\{(1,1)\}$
- $y_{1} \geq y_{2} \Longrightarrow \operatorname{PA}_{2}^{\text {inv }}(\mathbf{y})=\left\{(1,1),\left(1, y_{2}+1\right),\left(y_{2}+1,1\right)\right\}$.

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let $a<b<c$ be in \mathbb{N}. Then the following table provides car lengths $\mathbf{y} \in\{a, b, c\}^{3}$ and the corresponding nondecreasing parking assortments.

y	$\mathrm{PA}_{3}^{\operatorname{liv}, 1}(\mathrm{y})$
(a,a,a)	$(1,1,1),(1,1,1+a),(1,1,1+2 a),(1,1+a, 1+a),(1,1+a, 1+2 a)$
(a, a, b)	(1,1,), (1, 1, 1+a)
$(a, b, a), b=2 a$	$(1,1,1),(1,1,1+a),(1,1,1+2 a)$
$(a, b, a), b \neq 2 a$	$(1,1,1),(1,1,1+a)$
$(b, a, a), 2 a \leq b$	$(1,1,1),(1,1,1+a),(1,1,1+2 a),(1,1+a, 1+a),(1,1+a, 1+2 a)$
$(b, a, a), 2 a>b$	$(1,1,1),(1,1,1+a),(1,1+a, 1+a)$
(a, b, b)	$(1,1,1)$
(b, a, b)	$(1,1,1),(1,1,1+a)$
(b, b, a)	$(1,1,1),(1,1,1+a),(1,1,1+b),(1,1,1+a+b)$
(a, b, c)	(1, 1, 1)
$(a, c, b), a+b=c$	(1, 1, 1), (1, 1, 1+a+b)
$(a, c, b), a+b \neq c$	(1,1,1)
(b,a,c)	(1, 1, 1), (1, 1, 1+a)
(b,c,a), $a+b=c$	$(1,1,1),(1,1,1+a),(1,1,1+a+b)$
$(b, c, a), a+b \neq c$	(1, 1, 1), (1, 1, 1+a)
$(c, a, b), a+b \leq c$	(1, 1,), (1, 1, 1+a), (1, 1, 1+a+b)
$(c, a, b), a+b>c$	$(1,1,1),(1,1,1+a)$
$(c, b, a), a+b \leq c$	(1, 1, 1), (1, 1, 1+a), (1, 1, 1+b), (1, 1, 1+a+b)
$(c, b, a), a+b>c$	$(1,1,1),(1,1,1+a),(1,1,1+b)$

An Extremal Result
Theorem (Chen 2023): Let $\mathbf{y} \in \mathbb{N}^{n}$. Then

$$
\left|\mathrm{PA}_{n}^{\mathrm{inv}, \uparrow}(\mathbf{y})\right| \leq\binom{ 2^{n-1}+n-2}{n-1}
$$

Open Problems

1. Let $\mathbf{y} \in \mathbb{N}^{n}$. Do $\left|\mathrm{PA}_{n}^{\operatorname{inv}}(\mathbf{y})\right| \leq(n+1)^{n-1}$ and $\left|\mathrm{PA}_{n}^{\operatorname{inv}, \uparrow}(\mathbf{y})\right| \leq \frac{1}{n+1}\binom{2 n}{n}$ hold for any n ? 2. Let $\mathbf{y} \in \mathbb{N}^{n}$, where $\chi(\mathbf{y})=\alpha$, and $\mathbf{y}^{+}=\left(\mathbf{y}, y_{n+1}\right) \in \mathbb{N}^{n+1}$. What must be true about \mathbf{y} and \mathbf{y}^{+}to guarantee that $\chi\left(\mathbf{y}^{+}\right)=\alpha$?

References

```
1] Douglas M. Chen.
    On the structure of permutation invariant parking
OarXiv preprint ariv:2311.15699v1, 2015.
[2] Douglas M. Chen, Pamela E. Harris, J. Carlos
12. Dourlas M. Chen, Pamela E. Harris,,. Carlos Mart'inez Mori, Eric J. Pabón-Cancel, and Gabriel Sargent.
    Mermutation invariant parking assortments.
```


Acknowledgements

This research was partially supported by ICERM and funded by the NSF. Special thanks to Pamela Harris and Carlos Martínez for their mentoring throughout this research!

