Introduction and Background

Definition (parking functions):

- Consider a one-way street with $n \in \mathbb{N}$ parking spots.
- There are n cars waiting to enter the street sequentially; each car has a parking spot preference.
- When a car enters the street, it attempts to park in its preference; if it is occupied, the car continues driving down the street until it finds an unoccupied spot in which to park (if there is one).
- If the cars' preferences allow them all to park, we say it is a *parking function of* length n.

Example: Let $\mathbf{x} = (1, 2, 2)$.

History:

- These structures were introduced by Konheim and Weiss in their study of hashing functions.
- For a fixed n, the number of parking functions is $(n+1)^{n-1}$; the proof is a classical argument that makes use of a "circular parking lot."

Definition (parking assortments):

- There are $n \in \mathbb{N}$ cars of assorted lengths $\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{N}^n$ entering a one-way street containing $m = \sum_{i=1}^{n} y_i$ parking spots.
- The cars have parking preferences $\mathbf{x} = (x_1, x_2, \dots, x_n) \in [m]^n$ and enter the street in order.
- For each i, car i starts looking for parking at its spot x_i and parks in the first y_i contiguously available spots thereafter (if there are any).
- If all cars are able to park under the preference list \mathbf{x} , we say that \mathbf{x} is a parking assortment for \mathbf{y} .
- For a fixed y, let $PA_n(y)$ denote its set of parking assortments.

Note that any rearrangement of the entries of a parking function also results in a parking function. However, if $\mathbf{y} = (1, 2, 2)$, then $\mathbf{x} = (1, 2, 1)$ is a parking assortment, whereas its rearrangement $\mathbf{x'} = (2, 1, 1)$ is neither.

Definition (invariance): Given $\mathbf{y} \in \mathbb{N}^n$ and $\mathbf{x} \in \mathsf{PA}_n(\mathbf{y})$, we say \mathbf{x} is an invariant parking assortment for y if all of the rearrangements of x are also in $PA_n(y)$, Let $\mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})$ denote the set of invariant parking assortments for \mathbf{y} and $\mathsf{PA}_n^{\mathrm{inv},\uparrow}(\mathbf{y})$ denote the set of nondecreasing invariant parking assortments for y.

Definition (degree and characteristic): Let $\mathbf{y} \in \mathbb{N}^n$. For any $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{N}^n$ $\mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})$, the *degree* of \mathbf{x} is given by

 $\deg \mathbf{x} \coloneqq |\{i \in [n] : x_i \neq 1\}|.$

Moreover, the characteristic of \mathbf{y} is given by

$$\chi(\mathbf{y}) \coloneqq \max_{\mathbf{z} \in \mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})} \deg \mathbf{z}.$$

Notation (list operations): For $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{N}^n$, $k \in \mathbb{N}$, and $i \in [n]$, let $\mathbf{v}_{\widehat{i}} \coloneqq (v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_n) \in \mathbb{N}^{n-1}$ and $\mathbf{v}_{|_i} \coloneqq (v_1, v_2, \dots, v_i) \in \mathbb{N}^i$.

Permutation Invariant Parking Assortments

Douglas M. Chen

Johns Hopkins University

Whiting School of Engineering | Baltimore, MD Design Day 2024

Minimal Characteristic Results

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let y = 1 $(y_1, y_2, \ldots, y_n) \in \mathbb{N}^n$. If $\chi(\mathbf{y}) = 0$, then $\chi(\mathbf{y}_{|_i}) = 0$ for all $i \in [n]$.

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let y = $(y_1, y_2, \ldots, y_n) \in \mathbb{N}^n$. Then, $\chi(\mathbf{y}) = 0$ if and only if there does not exist $w \in \mathbb{N}_{>1}$ such that $(1^{n-1}, w) \in \mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})$.

Remark: This is a concise characterization for $\mathbf{y} \in \mathbb{N}^n$ to have minimal degree in the sense that there are only n distinct permutations of $(1^{n-1}, w)$, so we only need to perform mn parking experiments.

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let y = $(y_1, y_2, y_3) \in \mathbb{N}^3$. Then $\chi(\mathbf{y}) = 0$ if and only if $y_1 < y_2, y_1 < y_3$, and $y_1 + y_3 \neq y_2$. Theorem (Chen 2023): Let $y = (y_1, y_2, ..., y_n) \in \mathbb{N}^n$. If $\chi(y) = 0$, then $y_1 < \min(y_2, y_3, \ldots, y_n)$ and $y_2 \neq \sum y_j$.

Maximal Characteristic Results

Theorem (Chen 2023): Let $\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{N}^n$. Then $\chi(\mathbf{y}) = n - 1$ if and only if $y_1 \geq y_2$ and $y_2 = y_3 = \cdots = y_n$.

Structural and Enumerative Results

Theorem (Chen 2023): Let $y = (y_1, y_2, ..., y_n) \in \mathbb{N}^n$ and $y^+ = (y, y_{n+1}) \in \mathbb{N}^{n+1}$. • If $(1^{n-d}, \mathbf{w}) \in \mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})$, where $\mathbf{w} \in \mathbb{N}_{>1}^d$, then $(1^{n-d+1}, \mathbf{w}_{\widehat{i}}) \in \mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})$ for all

- $i \in [d].$
- If $\mathbf{x} \in \mathsf{PA}_n^{\text{inv}}(\mathbf{y})$, then $(1, \mathbf{x}) \in \mathsf{PA}_{n+1}^{\text{inv}}(\mathbf{y}^+)$. In particular, we have the embedding $\eta: \begin{cases} \mathsf{PA}_n^{\mathrm{inv},\uparrow}(\mathbf{y}) & \hookrightarrow \mathsf{PA}_{n+1}^{\mathrm{inv},\uparrow}(\mathbf{y}^+) \\ \mathbf{x} & \mapsto (1,\mathbf{x}). \end{cases}$

Theorem (Chen 2023): Let $\mathbf{y} = (b, a^{n-1}) \in \mathbb{N}^n$, where $n \ge 2$.

• If $a \mid b$ or b > (n-1)a, then $\mathbf{x} \in \mathsf{PA}_n^{inv}(\mathbf{y})$ if and only if $x_{(i)} \in \{1 + (k-1)a : k \in [i]\} \quad \forall i \in [n].$

Moreover,

$$\begin{aligned} \mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y}) &|= (n+1)^{n-1} \quad \text{and} \quad |\mathsf{PA}_n^{\mathrm{inv},\uparrow}(\mathbf{y})| = \frac{1}{n+1} \binom{2n}{n}. \\ \text{if } a \nmid b \text{ and } b < (n-1)a, \text{ then } \mathbf{x} \in \mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y}) \text{ if and only if} \\ x_{(i)} \in \begin{cases} \{1+(k-1)a:k\in[i]\} & \forall i\in\left[\left\lfloor\frac{b}{a}\right\rfloor+1\right] \\ \{1+(k-1)a:k\in\left[\left\lfloor\frac{b}{a}\right\rfloor+1\right]\} & \text{otherwise.} \end{cases} \end{aligned}$$

• Otherwise,

$$\begin{aligned} \mathsf{P}\mathsf{A}_n^{\mathrm{inv}}(\mathbf{y}) &|= (n+1)^{n-1} \quad \text{and} \quad |\mathsf{P}\mathsf{A}_n^{\mathrm{inv},\uparrow}(\mathbf{y})| = \frac{1}{n+1} \binom{2n}{n}. \\ \text{f } a \nmid b \text{ and } b < (n-1)a, \text{ then } \mathbf{x} \in \mathsf{P}\mathsf{A}_n^{\mathrm{inv}}(\mathbf{y}) \text{ if and only if } \\ c_{(i)} \in \begin{cases} \{1+(k-1)a:k\in[i]\} & \forall i\in\left[\left\lfloor\frac{b}{a}\right\rfloor+1\right] \\ \{1+(k-1)a:k\in\left[\left\lfloor\frac{b}{a}\right\rfloor+1\right]\} & \text{otherwise.} \end{cases} \end{aligned}$$

Moreover,

$$|\mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})| = \sum_{j=0}^{n-\lfloor b/a \rfloor - 1} (-1)^j \binom{n}{j} \left(n - \lfloor \frac{b}{a} \rfloor - 1\right)^j (n - j + 1)^{n-j-1} \quad \text{and}$$
$$|\mathsf{PA}_n^{\mathrm{inv},\uparrow}(\mathbf{y})| = \frac{n - \lfloor b/a \rfloor + 1}{n+1} \binom{n + \lfloor b/a \rfloor}{\lfloor b/a \rfloor}.$$

Remark: Some of these enumerative formulas are deduced via two results: an enumerative result related to the theory of the Pitman-Stanley polytope and empirical distributions and a recursive formula for Catalan's triangle.

 $j \in [n] \setminus \{2\}$

Towards Computing $PA_n^{mv}(\mathbf{y})$

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let $y = (y_1, y_2) \in Q$ \mathbb{N}^2 .

• $y_1 < y_2$	\Longrightarrow	$PA_2^{\mathrm{inv}}(\mathbf{y}) = \{$
• $y_1 \ge y_2$	\Longrightarrow	$PA_2^{\mathrm{inv}}(\mathbf{y}) = \{$

corresponding nondecreasing parking assortments.

У	
(a, a, a)	(1, 1, 1), (
(a, a, b)	
(a, b, a), b = 2a	
$(a, b, a), b \neq 2a$	
$(b, a, a), \ 2a \leq b$	(1, 1, 1), (
$(b, a, a), \ 2a > b$	
(a,b,b)	
(b, a, b)	
(b, b, a)	
(a,b,c)	
(a,c,b), a+b=c	
$(a, c, b), a + b \neq c$	
(b, a, c)	
$(b, c, a), \ a + b = c$	
$(b, c, a), a + b \neq c$	
$(c, a, b), a+b \le c$	
$(c, a, b), \ a + b > c$	
$(c, b, a), a+b \le c$	
(c, b, a), a+b > c	

Theorem (Chen 2023): Let $\mathbf{y} \in \mathbb{N}^n$. Then

- about y and y⁺ to guarantee that $\chi(y^+) = \alpha$?
- [1] Douglas M. Chen. On the structure of permutation invariant parking. arXiv preprint arXiv:2311.15699v1, 2015.
- Permutation invariant parking assortments. Enumerative Combinatorics and Applications, 4(1):Article #S2R4, 2024.

This research was partially supported by ICERM and funded by the NSF. Special thanks to Pamela Harris and Carlos Martínez for their mentoring throughout this research!

 $\{(1,1)\}.$ $\{(1,1), (1, y_2 + 1), (y_2 + 1, 1)\}.$

Theorem (Chen, Harris, Martínez, Pabón, and Sargent 2022): Let a < b < cbe in N. Then the following table provides car lengths $\mathbf{y} \in \{a, b, c\}^3$ and the

$$\begin{array}{r} \mathsf{PA}_3^{\mathrm{inv},\uparrow}(\mathbf{y}) \\ \hline (1,1,1+a),(1,1,1+2a),(1,1+a,1+a),(1,1+a,1+2a) \\ \hline (1,1,1),(1,1,1+a) \\ \hline (1,1,1),(1,1,1+a),(1,1+2a) \\ \hline (1,1,1),(1,1,1+2a),(1,1+a,1+a),(1,1+a,1+2a) \\ \hline (1,1,1),(1,1,1+a),(1,1+a,1+a) \\ \hline (1,1,1),(1,1,1+a),(1,1+a,1+a) \\ \hline (1,1,1),(1,1,1+a),(1,1,1+a+b) \\ \hline (1,1,1) \\ \hline (1,1,1),(1,1,1+a),(1,1,1+a+b) \\ \hline (1,1,1),(1,1,1+a) \\ \hline (1,1,1),(1,1,1+a),(1,1,1+a+b) \\ \hline (1,1,1),(1,1,1+a) \\ \hline (1,1,1),(1,1,1+a),(1,1,1+a+b) \\ \hline \end{array}$$

An Extremal Result

 $|\mathsf{PA}_n^{\mathrm{inv},\uparrow}(\mathbf{y})| \le \binom{2^{n-1}+n-2}{n-1}.$

Open Problems

1. Let $\mathbf{y} \in \mathbb{N}^n$. Do $|\mathsf{PA}_n^{\mathrm{inv}}(\mathbf{y})| \leq (n+1)^{n-1}$ and $|\mathsf{PA}_n^{\mathrm{inv},\uparrow}(\mathbf{y})| \leq \frac{1}{n+1} \binom{2n}{n}$ hold for any n? 2. Let $\mathbf{y} \in \mathbb{N}^n$, where $\chi(\mathbf{y}) = \alpha$, and $\mathbf{y}^+ = (\mathbf{y}, y_{n+1}) \in \mathbb{N}^{n+1}$. What must be true

References

[2] Douglas M. Chen, Pamela E. Harris, J. Carlos Martínez Mori, Eric J. Pabón-Cancel, and Gabriel Sargent.

Acknowledgements