# **Giraffe Feeding Enrichment to Promote Natural Locomotive Patterns**



Angel Garcia, Eric Guo, Melody Lee, Divya Ravindra Faculty Mentor: Dr. Nusaybah Abu-Mulaweh Project Partner: Joey Golden, The Maryland Zoo



## **Project Background**

The difference between the natural habitat and the zoo environment can deeply impact the mental and physical well-being of zoo animals. Our challenge is to design a feeding device that promotes giraffe's natural locomotion behavior in the zoo to minimize the said difference.



## **Design Criteria**

- Food as an incentive for locomotion
- Minimal manual labor (automated)
- · Simulate a natural environment
- Endure physical strength of giraffes

### **Meet the Team**



Angel Chemical & Biomolecular Engineering, '23



**Eric** Mechanical Engineering, '23



Melody Computer Science, Neuroscience, '23



**Divya** Computer Science, '25

## **Solution**



#### **Device Logic** Sound Giraffe Giraffe randomly initially away approaches activates to from feeding device within signal feeding device 5 feet opportunity sensed by PIR body motion sensor Motor NOT Motor activated: OR activated: food food dispensed not dispensed No food found. Giraffe forages giraffe moves for food away from

# <u>Device Features</u>

#### Mechanical:

device

- Auger coil for smooth, variable, and controlled food release
- Aluminum casing provides structural integrity and mounting
- Customizable foraging component

#### **Electronics:**

- Sensor-controlled motor activation
- Keypad enables easy UI for the zookeepers to customize device
- Wireless communication between sensor box and main device

## **Acknowledgement**

Special thanks to the resources provided by Multidisciplinary Engineering Design, Dr. Nusaybah Abu-Mulaweh, Joey Golden, and the Maryland Zoo team.

Internal view of main

device & sensor box



