Manevra: Redefining Arthroscopy

Sneha Kamada¹, Samhita Vasu¹, Betul Celiker¹, Esanika Mukherjee¹, Matt Kunkler¹, Ben Miller¹, Pranhav Sundararajan¹, Natasha Porwal¹, Aditya Bhide¹, Dr. Nicholas Durr¹, Dr. Alexander Johnson², Dr. Alexander Loeb², Dr. Matthew Best², Dr. Adam Levin²

Project Background

Knee arthroscopy is a minimally invasive procedure performed more than 1.77 million times yearly¹. Though efficient and low-risk, these procedures are known for awkward positioning and difficult visualization of certain joint spaces like the posterior compartment of the knee. The Gillquist maneuver accesses this space by inserting the scope between the medial femoral condyle and posterior cruciate ligament or above the medial meniscus².

25% of Gillquist maneuvers result in damage to the knee and often fail to provide sufficient visualization, leading to many procedures being conducted without visualization³.

This project improves upon the rigid arthroscope by adding flexibility to improve visualization.

Design Requirements

Must Haves:

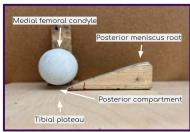
- 1. Increase visualization compared to the rigid arthroscope
- 2. Not larger than 4-6 mm in diameter
- 3. Does not significantly increase learning curve

Need Statement

Orthopedic surgeons need a more effective method of accessing the posterior compartment while performing arthroscopic knee surgery that increases visualization within the posterior joint space.

Testing/Results

Angled Visualization Model



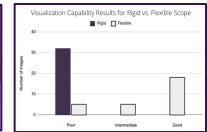


Figure 1: Sample results from angled visualization tests

The flexible prototype acquired greater visualization at a closer proximity for all angled mazes.

Gillquist Maneuver Model

Figure 2: Anatomical box model based on Gillquist maneuver: inserting the scope under the medial femoral condyle and over the medial meniscus.

Testing with the box model resulted in a minimal learning curve and fewer collisions for the flexible scope. The flexible scope demonstrated better visualization capacity of the back of the box than the rigid scope.

Final Device Design

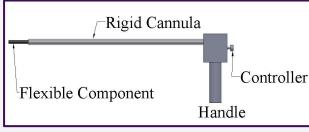
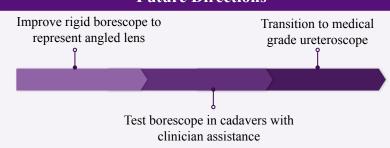



Figure 3: Final design

The final device design is a fully flexible scope with a maneuverable tip (with at least 130 degrees of rotation) encased within a rigid cannula. The flexible tip will be controlled with a lever in one-hand controlling up-down motion and with manual rotation for right-left movement.

Future Directions

References

[I] Shah, N. V., Solow, M., Kelly, J. L., Ahyarov, A., Doran, J. P., Bloom, L. R., Akil, S., Siddiqui, B., Newman, J. M., Chatterjee, D., Pancholi, N., Dixit, A., Kavousi, B., Barbash, S. E., Luhan, W. P., & Neuman, D. T. (2018). Demographics and rates of surgical arthroscopy and postoperative rehabilistative preferences of arthroscopists from the Arthroscopy Association of North America (AANA), Journal of orthopaedics, 15(2), 591–595. https://doi.org/10.1016/j.jor.2018.05.053 van der Schatte Olivier, R. H., vart Hullenaer, C. D., Ruurda, L. P., & Bamp; Broeders, L. A. (2009). Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surgical Endoscopy, 25(6), 1565–1571. https://doi.org/10.1007/s00464-008-0184-6 [2] Van der Schatte Olivier, R. H., vant Hullenaer, C. D., Ruurda, L. P., & Bamp; Broederders, L. A. (2009). Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surgical Endoscopy, 25(6), 1365–1571. https://doi.org/10.1007/s00464-008-0184-6 [3] [2] Le I. Y. Chia, B., Chang, B. A. Review of the Giliquist Maneuvery. Modifications for a Safer a dashiy Reproducible Approach for Knee

Lee JY, Chia ZY, Jiang L, Ang B, Chang P. A Review of the Gillquist Maneuver: Modifications for a Safer and Easily Reproducible Approach for K insintercondylar Notch Posterior Compartment Arthroscopy. Arthrosc Tech. 2020 Mar 3;9(4):e435-e458. doi: 10.1016/j.eats.2019.11.014. PMID: 32568-CID: PMC/1889957.

