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Since the first emergence of SARS-CoV-2 in December 2019, COVID-19 
has become a public health crisis and challenge all over the world. 
However, questions remain on its modes of transmission, treatments, 
and vaccines even after a year of the initial outbreak. Although many 
projection models have been launched to estimate the number of cases 
and deaths, these models failed to account for different types of 
communities and environments people live in. In that, significant insight 
into the mechanisms for disease spread at the community level is 
necessary and significant, especially across an extremely diverse array of 
communities, each with its own structure and idiosyncrasies.
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Therefore, to address this issue, the Delineo proposes a combination of 
agent-based and compartment models that brings variability and 
adaptability to each individual, community, and country. By using 
geolocation and demographic data to simulate interactions, Delineo 
predicts the spread of the virus in an individualized, complex setting and 
under targeted environments.  Our goal is for Delineo to fill this critical 
gap by providing a community-level simulator to public health experts 
and decision-makers so that they have tools they need to navigate the 
maze of uncertainty created by these invisible threats.

The Delineo community-level COVID-19 simulator has the goal of 
piercing the veil of pandemic spread by providing: 

1) insights into how COVID-19 and future transmissible diseases 
spread at the local level for specific communities, and 

2) an environment for users to explore which interventions tailored 
to the local level are the most effective at containing the disease, 
leading to the novel concept of precision public health.

Using community-level simulation will allow local-level decision-makers 
to implement precision interventions that are less one-size-fits-all and 
more tailored to combat spread in a specific community, in all likelihood
with less negative impact on the economic and psychological well-being 
of the community.

Objectives

Introduction

Materials and Methods
We consulted experts in the field to determine the best methods in 
creating our novel disease model. Their mentorship led us to the 
utilization of the Iterative Proportional Fitting Procedure (IPFP) and the 
Wells-Riley equation as described in the following sections. Additionally, 
research was done to generate informed conclusions about the general 
disease characteristics of COVID-19 as well as trends in contagiousness, 
transmissibility, and disease trajectory.
We also sourced and applied various datasets that informed our 
simulation. Firstly, the demographic information of agents within our 
synthetic population was generated from United States Census Bureau 
data, where we were able to compile age, sex, race, and socioeconomic 
status (SES) information per geographic location. Additionally, our team 
employed geolocation data from Safegraph, a data company, to inform 
the mobility networks and agent trajectories within our model. 

Results

Conclusion
Community-based simulation is a critical component for understanding the 
mechanisms underlying the spread of disease.  Delineo, and its simplified version 
Anytown USA, provides a tool for public health experts, policymakers, researchers, 
teachers and students to lift the veil of uncertainty on infectious respiratory 
diseases such as COVID-19 to design safe and effective preventative measures and 
intervention strategies.  Please visit www.covidweb.isi.jhu.edu to use Anytown USA 
and for additional information.

Simulation Model & Synthesis
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There are two phases built into our simulation. The pre-iteration 
phase involves the creation of a synthetic population using an 
open-source project called SynthPop, a reimplementation of 
PopGen using the modern scientific Python stack. After 
incorporating additional demographic information such as 
gender, age, race, and socioeconomic status into the synthetic 
population through existing census data, the underlying medical 
conditions are distributed among the population based on 
known demographic predispositions. Afterwards, SynthPop
assigns agents into households given their specific demographic 
data as well as daily and weekly movement trajectories among 
the submodules, or facilities, within the simulation.

Agent Mobility Patterns: 
Iterative Proportional Fitting Procedure
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Our model uses the Iterative Proportional Fitting Procedure 
(IPFP), a classical algorithm in computer science that performs 
data scaling based on current datasets, to create a mobility 
network containing information about the number of 
individuals (agents) traveling from each Census Block Group 
(CBG) to Point of Interest (POI). A Census Block Group is the 
smallest geographical unit for which the Census bureau

Delineo Website & 
Anytown USA
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The Delineo website provides 
an intimate user experience 
that allows for the general 
population to gain a better 
understanding of the various 
factors and public health 
measures that impact disease 
spread. In addition to the 
general information provided

Severity-Based Disease Model
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Our disease model splits the severity of infection into four 
states, asymptomatic, mild, severe, and critical, depending on 
the typical symptoms displayed by an individual. 
An agent's possibility of contracting disease depends on their severity risk (SR) score and the probability of infection within a 
facility. The SR score, which ranges from 0-100, takes into account sex, age, and underlying conditions. This score will determine 
the probability that an agent is assigned one of the four peak disease states, which determines how quickly an agent recovers
and/or is removed from the population. These disease states will also dictate an agent’s level of contagiousness, along with 
time spent in the “infected” state. If an agent is established to be infected, they will move through all the lower disease states 
until they reach their assigned peak state, then recover. From our research, we have determined that a portion of those critical
will die from the disease and thus be removed from the simulation’s population.

The iteration phase initiates the simulation. Hourly updates change each agent’s submodule location and assigns new exposures 
of the disease if needed. The determination of infection is informed by the Well-Riley equation which provides a probability of 
infection informed by multiple facility-based variables. Additionally, household-based interactions will shift between each hour. 
As for daily updates, the model will take in new and existing exposures to revise each agent’s disease state and contagiousness.

publishes sample data and has a population of around 600 to 3000 people. We define a POI as any location (facility) that an agent can visit 
such as a coffee shop, school, workplace, etc. 
Safegraph provides our model with accurate datasets outlining how many people from each CBG arrive at a particular POI every hour. This
dataset is utilized to construct a CBG Marginal and a POI Marginal that are linked to the Visit Matrix which records the number of people 
travelling from a Census Block Group to a Point of Interest. Since all POI’s have varying durations of visit, two assumptions were made. 
Firstly, that each visitor to a POI spends a median length of time calculated in that POI and secondly, that each new visitor in a POI is 
equally likely to arrive again any time from that time to the next hour. Extreme outliers are also truncated. The Dwell Time Correction 
Factor is then used to adjust the CBG and POI values, which are utilized in IPFP to calculate the adjusted visitor matrix which serves as a 
probabilistic model for the general mobility network.
From this, trajectories for individual agents are modelled. After extrapolating that data to represent 20% of the US population, it is scaled 
up by a predetermined factor in the IPFP process to accurately delineate the complete picture. Our method also tries to reduce information 
entropy and limits the amount of error.
Once a mobility network is assembled using our Machine Learning model, it is integrated with the main simulation. Agents of our synthetic 
population are then assigned to each ‘role’ (POI) depending on their CBG such that the simulation accurately tracks real-world behavior, 
trends, demographics and restrictions such as stay-at-home orders.

Facility Submodule Spread: 
Wells–Riley & the Household Graph Approach
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A submodule is any location/place/building that individuals in the population can be found at any point in 
time. A submodule is defined by its overall type/label (retail, school, home, etc), its size, and its location 
(detailed by its latitude & longitude). Based on the overall type/label of the submodule, the Wells-Riley 
equation is utilized to determine a probability of infection (P). This equation has typically been used to 
assess ventilation strategies and their associations to airborne pathogen infectivity. In our model, the 
facility’s properties will inform the variables Q and p within the equation, whereas the agents and their 
disease states will inform variables I and p. Every hour, the simulation takes in a facility’s factors to 
determine P and new exposures (infections) are assigned. 
However, a household tends to spend more time together in proximity. Additionally, household 
interactions are unique to how agents interact within a facility. Thus, we have utilized a graph approach 
to model inter-household interactions. With this approach, each household becomes a node in a graph 
and its edges represent interactions between households. Within the simulation, there will be m groups 
of n households interacting. In conjunction to other graph algorithms, these groups of households would 
be represented on the graph as SCCs (Strongly Connected Components). All nodes within an SCC are 
reachable from one another. This allows us to quantify what kind of interaction occurs. Edge weights 
represent the level of contact/distance between households, with closer interactions having larger edge 
weights. When assigning infection, we ignore edges between two non-infected, susceptible households 
(households where all agents have not been infected). Therefore, we can iterate through infected 
households and use the edge weights to assign infections.
Our utilization of the Wells-Riley equation and the graph approach allows flexibility to insert different 
interventions such as mask wearing, capacity restrictions, testing, contact tracing, quarantine, and stay-
at-home orders into our model. For interventions that affect agent behavior and properties such as mask 
wearing, we modify the Wells-Riley variables q and p to indicate their effects on contagiousness. 
Additionally, interventions that decrease agent movement into facilities such as contract tracing, 
quarantine, stay-at-home orders, and capacity restrictions will decrease the number of individuals within 
each facility (variable I) as well as the number of edges within the overall household graph. These 
modifications impact the accumulation of overall number of infected individuals within our simulation.

about our project, we’ve built a simplified web-based version of our model, Anytown 
USA. Unlike Delineo which can be customized to any area within the United States, 
Anytown USA is a disease model of a typical small town in rural America, providing the 
user with an educational experience of how different variables and interventions affect 
the spread of COVID-19.

http://www.covidweb.isi.jhu.edu/

