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Specific Aim 1: Optimize the current 3D microfluidic 
system to be representative of AD brain microvessels
• Modify seeding density and alter antibody submersion
Specific Aim 2: Create a process to quantify changes in 
barrier function during AD progression
• Design a functional assay for Aβ40 and Aβ42 transport
Specific Aim 3: Assess BBB identity and changes in 
barrier function in response to PSEN M146V and 
APPswe familial AD mutations
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A. Foundational Testing • TEER testing established baselines for barrier function, 
validating the microfluidic model for AD studies with 
PSEN1 and APP mutations 

• Modifying the collagen matrix immersion method during 
immunohistochemistry optimized staining

• Both APP and PSEN1 AD familial mutations showed 
upregulation of junctional and transport proteins 
relative to the WT control devices

• CD31 upregulation suggests changes to the 
endothelial identity of brain microvascular cells in AD

• Cell turnover functional assay testing revealed reduced 
cell turnover in AD 

• Transport assays found an increase in transport of 
Aβ40 and Aβ42, prompting further study

• Continue transport assay testing to build a dataset of 9 
total replicates, with 3 for each condition

• The receptor for advanced glycation end products 
(RAGE) is implicated in Aβ transport, conduct transport 
assay testing with RAGE inhibition and quantify any 
changes across the 3 models

• Implement extrinsic cues of AD, such as oxidative 
stresses, into the model and characterize any changes 
to BBB function
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B. Immunohistochemistry

Figure 2. Transendothelial electrical 
resistance testing (TEER) of all cell lines to 
confirm endothelial identity and find baselines. 

Figure 4. Representative images of maximum 
intensity z-stack projections of 
immunohistochemistry for nuclei (DAPI), 
junctional proteins (occludin, ZO-1), transport 
proteins (P-gp, GLUT1), endothelial identity 
markers (VE-cadherin, CD31), and AD-
associated biomarkers (Aβ40, Aβ42, BACE1).

Figure 5. Immunohistochemistry fluorescence for each marker 
normalized to DAPI nuclear staining. (1-way ANOVA test; *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001)

• Fluorescence normalization of immunohistochemistry 
staining showed upregulation of CD31, GLUT1, P-gp, 
Aβ40, ZO-1, and Occludin in AD models compared to 
the WT control

• Downregulation in AD models was only seen for Claudin 
5, with Aβ42 and VE-cadherin signaling appearing to be 
within error of fluorescence in WT control devices

• Alzheimer’s 
Disease (AD) 
impacts 6.5 million 
in the US1 and is 
incurable despite its 
well-characterized 
pathology (Fig. 1A). 

• AD studies show 
junctional 
weakening2,3 of the 
BBB that precedes 
development of 
amyloid plaques 
and tau tangles

Figure. 1: Contrast in healthy and AD 
pathologies. A) Myelin disintegration and the 
ensuing development of Ab plaques. B) BBB 
astrocyte/pericyte death and barrier breakdown.

• The mechanisms by which BBB progression contributes 
to AD is unknown because developing a model to 
control for the many cues of AD is difficult4
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C. Functional Assay Testing
A B

Figure 6. Cell turnover functional testing comparing proliferation (A), loss (B), and 
turnover (C) rates for all cell lines. (1-way ANOVA test; *p ≤ 0.05)

Figure 7. Preliminary 
transport assay testing.
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B. Optimization
DAPI Claudin 5 GLUT1

Non-specific binding Optimized binding
Figure 3. Modification of the gel immersion method during 
immunostaining replaced non-specific antibody 
fluorescence outside the microvessel (A) with targeted 
cell-antibody interactions (B).
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