Predicting Length of Stay For Acute Stroke Patients Using Hemodynamic Features
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Background

e Stroke is a leading cause of death and disability.

e During the acute stroke period, there is a disruption of the
blood-brain barrier and cerebral blood flow
autoregulation.

e Hemodynamic variability has been associated with worse
outcomes

e Using hemodynamics to predict normal vs abnormal
lengths of stay (LOS) may help in risk profiling, care
coordination, and resource allocation

e Combine static and time-series data to feed models

e Predictive models include Generalized Linear Models,
Random Forest, and XGBoost

e Output label: patient length of stay (LOS)

e LOS converted into a binary label

Static Patient Data

® Age

® Gender

o Comorbidities
® Stroke severity
® etc.

Physiologic time series data
from a 24 hr window -

Will patient length of stay
be 27 days?

Predictive Model

Figure 1: Design image demonstrating the project pipeline. Data
taken from the first 24 hours of admission. Feature space is used to
train models to predict patient length of stay

e Included 2,025 patients from Johns Hopkins Stroke Center
e Demographics matched general stroke population well
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Figure 2: Top 20 features using RF feature ranking. High scoring features were
derived from glasgow, orientation, pulse, and IV features.
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Figure 3: ROC and Precision-Recall curves for final models. XGBoost scored
the highest with an AUC of 0.840.

Specificity | Sensitivity | PPV | NPV | Fl-score | Accuracy

0.80 0.76 0.70 | 0.85 0.73 0.79

Table 1: XGBoost statistics for the optimal operating point
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Figure 4: AUC scores for varying time windows. The
observation window for time series data was increased to 48
hours and 72 hours. Model AUCs yielded comparable results

Discussion / Conclusion

e Our results enable prediction of LOS > 7 days for
stroke patients with respectable performance after
the first 24 hours of admission, and can be updated
at each 24 hours interval.

e Limitations include data coming from a single site
as well as inability to capture non-medical factors
related to LOS such as insurance plan and social
determinants.

e Further work is needed to refine these models,
validate in other stroke centers, and implement into
clinical practice in order to understand the full
impact of such predictions




