Predicting Length of Stay For Acute Stroke Patients Using Hemodynamic Features

Zach Murphy,^{1,2} Michael Ainsworth,¹ Alex Hepp,¹ Varun Naga,¹ Athena Olszewski,¹ Kirby Gong,¹ Elizabeth Zink,³ Joseph Greenstein,⁴ Raimond Winslow,⁴ Mona Bahouth,⁵

¹Department of Biomedical Engineering, Johns Hopkins University, ²Johns Hopkins University School of Medicine, ³Neuroscience Critical Care Unit, Johns Hopkins Medicine

⁴Institute for Computational Medicine, Johns Hopkins University, ⁵Department of Neurology, Johns Hopkins University School of Medicine

Background

- Stroke is a leading cause of death and disability.
- During the acute stroke period, there is a disruption of the blood-brain barrier and cerebral blood flow autoregulation.
- Hemodynamic variability has been associated with worse outcomes
- Using hemodynamics to predict normal vs abnormal lengths of stay (LOS) may help in risk profiling, care coordination, and resource allocation

Methods

- Combine static and time-series data to feed models
- Predictive models include Generalized Linear Models, Random Forest, and XGBoost
- Output label: patient length of stay (LOS)
- LOS converted into a binary label

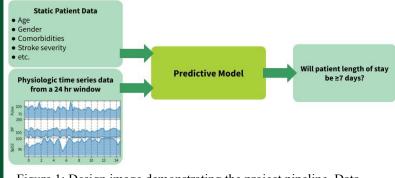
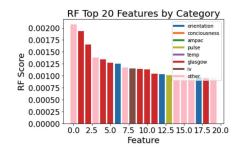



Figure 1: Design image demonstrating the project pipeline. Data taken from the first 24 hours of admission. Feature space is used to train models to predict patient length of stay

Results

- Included 2,025 patients from Johns Hopkins Stroke Center
- Demographics matched general stroke population well

Feature ranking reduced feature space from **8741 features** to **785 features**

Figure 2: Top 20 features using RF feature ranking. High scoring features were derived from glasgow, orientation, pulse, and IV features.

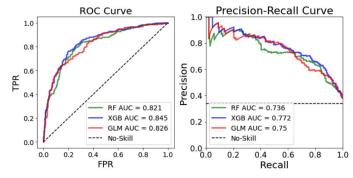


Figure 3: ROC and Precision-Recall curves for final models. XGBoost scored the highest with an AUC of 0.840.

	Specificity	Sensitivity	PPV	NPV	F1-score	Accuracy
	0.80	0.76	0.70	0.85	0.73	0.79

Table 1: XGBoost statistics for the optimal operating point

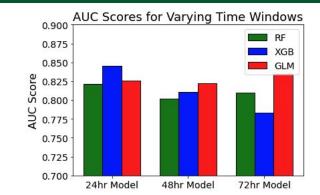


Figure 4: AUC scores for varying time windows. The observation window for time series data was increased to 48 hours and 72 hours. Model AUCs yielded comparable results

Discussion / Conclusion

- Our results enable prediction of LOS ≥ 7 days for stroke patients with respectable performance after the first 24 hours of admission, and can be updated at each 24 hours interval.
- Limitations include data coming from a single site as well as inability to capture non-medical factors related to LOS such as insurance plan and social determinants.
- Further work is needed to refine these models, validate in other stroke centers, and implement into clinical practice in order to understand the full impact of such predictions