
Baiting and Ambushing in Baseball: A Game Theoretic Approach

Anton Dahbura and Jaspar Carmichael

Johns Hopkins University | Whiting School of Engineering | Baltimore, MD

Design Day 2022

The idea of ambushing is one that has been present in the sport
for as long as the game has been around but hasn’t been formally
acknowledged. A player can theoretically deviate from their
expected strategy to surprise, or “ambush”, their opponent,
effectively gaining an advantage over them. For example, a pitcher
may elect to throw a fastball down the middle in an 0-2 count
when the hitter is expecting him to throw a “waste” pitch, catching
the hitter off guard. In this project, we establish a game-theoretic
model along with a simulation environment written in Python to
capture this relationship and investigate questions regarding
when, how, and for how long a player should deviate to gain the
largest possible advantage from “ambushing” their opponent in
certain situations.

The goal is to use game theory principles and a simulation
environment to investigate the details behind the idea of
ambushing in the game between the hitter and the pitcher. The
simulations will allow us to visualize the results of either hitter
deviating and from these visuals, meaningful conclusions can be
drawn.

Objectives

Introduction

Methods

There are two aspects to the project: the game theoretical model
and the simulation environment. First, I will describe the game
theoretical model. The game between the hitter and the pitcher is a
zero-sum mixed strategy game. The payoff matrix accounts for 4
situations: the pitcher throws either a ball or a strike and the hitter
either swings at the pitch or takes it. The payoff for each outcome is
given in wOBA (weighted On Base Average). The probabilities of an
umpire mistake, the batter hitting a strike if he swings, the batter
hitting a ball if he swings, the probability of the batter hitting a foul
ball are, and the corresponding wOBA weights used to determine
the payoff for each scenario. Then, the payoff matrix is used
to determine the Nash Equilibrium. The Nash Equilibrium strategies
for each player are viewed as a compromise between the two
players, and once this compromise is broken, each player is
attempting to gain an advantage over their opponent. The
simulation environment was created in Python to visualize the
results of two players deviating between strategies. In the
simulation, the pitcher and the hitter are initially playing their Nash
Equilibrium. One player deviates from their expected strategy to
"bait" their opponent off of the NE strategy. After this, each player
is jumping around to different strategies based on what they think
their opponent is playing. The simulation goes on for 20 stages, and
it keeps track of the cumulative payoff earned throughout the

Results

From these results, it is difficult to make any clear assumptions.
What can be concluded, however, is that the baiting and ambushing
sequence unlocks players' abilities to game their opponents and
possibly put themselves in a more advantageous situation. The
trends depicted in the visual support this sentiment. It is clear that to
determine concrete conclusions, more work is needed.

In terms of future work, there is on area of large significance in the
picking of an optimal strategy mechanism. We would like to formalize
the process of determining the expected cumulative payoff until
detection. This value would be used to pick an optimal strategy to
switch to. As the program stands, this process is completed by
experimentally using the detection mechanism to determine the
average expected events until detection for 1000 instances. By
finding a formula to determine the ECPUD, this will drastically reduce
the runtime of the program and make our results more precise. Once
this aspect is resolved, exploring different hitters, counts, and other
simulation configurations will allow us to gain more insight into this
relationship.

Conclusion and Future Work

Each of these instances is unique, as there is a stochastic nature to
this simulation due to the probabilistic nature of the mechanism.

When analyzing this visual, it is important to identify the meaningful
comparison. In this case, comparing each instance to the Nash
Equilibrium instance is useful. In each instance, it is obvious that the
pitcher wins each one as the payoffs are severely negative. However,
this is just inherent in the 0-2 count. The hitter is at a severe
disadvantage in an 0-2 count as the pitcher can be the aggressor, so it
is just natural that the hitter finds themselves at a disadvantage.
Thus, it is more useful to compare each instance to the Nash
Equilibrium instance to see if the deviation by the hitter gives them
an advantage compared to that alternative.

Three of the instances end up on the positive side of the Nash
Equilibrium line and the other three below it. In two of the cases that
fall below the line, they are much closer to being positive. The single
outlier happens because the state of the game stays in a position that
gives the pitcher a large advantage for a large time. This is prone to
happen due to the stochastic nature of the process. This visual
depicts this baiting and ambushing sequence as a tug-of-war where
each player can find a strategy that puts them at an advantage over
their opponent. While the results don’t provide clear proof that the
hitter gains an advantage, it seems that when looking at the whole
picture this visual provides, the hitter is more likely to put themself in
a more advantageous position by first deviation to an unexpected
strategy.

simulation. The output is a graph depicting this cumulative payoff in comparison to the situation
where the players continue playing their Nash Equilibrium strategies. This visual is shown and
discussed to the right.

There are two aspects to the simulation environment: the detection mechanism, and a mechanism
to determine the optimal strategy to switch to. The detection mechanism uses the binomial
distribution and a predetermined confidence threshold. Using the inferred opponent strategy, the
binomial distribution for a given number of successes (strikes thrown or pitches swung at)
determines the probability that the sequence could have occurred. If this probability is below the
confidence threshold, then that is deemed a deviation. Once a deviation is detected, the program
determines the optimal strategy to switch to in response to the inferred strategy.

To determine what strategy to switch to next, the expected cumulative payoff until detection
(ECPUD) is computed for each possible strategy 0 through 1 and the optimal value is picked as the
new strategy. The ECPUD is calculated by multiplying the expected events until detection by the
payoff per event for the combination of strategies. In this way, the program effectively chooses an
optima response for each player.

Shown above is the output of multiple instances of the simulation program overlayed on a
single plot. Each instance is run using the game theoretical model produced by Major Leaguer
Ben Zobrist’s offensive statistics from the year 2014. Additionally, each instance represents the 0-
2 count for the sake of example. It is worth noting that the results would look different for
each different count. As mentioned before, the simulation happens over 20 stages, where each
stage is the period in which two unique strategies are being played. The current stage ends, and the
next stage begins when one player detects a deviation and switches their strategy
accordingly. Each line represents that instances cumulative payoff over the 20 stages. The red line
represents the situation in which both the hitter and the pitcher maintain their NE strategies.

