

# **Prediction of the Microbial Origin of Presumed Sepsis in PICU Encounters**

Joseph Boen<sup>1</sup>, Shiker Nair<sup>1</sup>, Hao Tong<sup>1</sup>, Jason Werenski<sup>1</sup> Luis Ahumada<sup>2</sup>, Jules Bergmann<sup>2</sup>, James Fackler<sup>2</sup>, Joseph Greenstein<sup>1</sup>, Casey Overby Taylor<sup>1</sup>

<sup>1</sup> Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA <sup>2</sup> Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

## Introduction & Background

- Sepsis is an extreme bodily reaction caused from an infection, accounts for ~30% of all hospital mortality.
- Standard treatment is broad-spectrum antibiotics, however, 50% of all sepsis cases are not bacterial in origin, leading to antibiotic overuse.

## **Objective**

To build statistical models for predicting the microbial origin of presumed sepsis in PICU patients by using physiological time series data.

#### **Methods**

- Patient data from the JHU ACCM PMAP Database.
- Include if unstable temperature (< 36°C or > 38.5°C)
- Include if physiological time series (heart rate, blood pressure, respiratory rate, blood oxygenation) present.
- Patient labels: **Bacterial (n = 99)** if positive blood test, Non-Bacterial (n = 642) if negative blood test, Not **Infected (n = 1,187)** if no test is taken.









Figure 2. Receiver Operating Characteristic (ROC) curves for each class. Random Forest Classifier.



Figure 3. Precision Recall (PR) curves for each of class. Random Forest Classifier.

#### Results

| Rank | Class 0        | Class 1   | Class 2     |
|------|----------------|-----------|-------------|
| 1    | NIBP Minimum 6 | HR Std 9  | HR Std 10   |
| 2    | HR Mean 10     | HR Std 10 | RR Mean 5   |
| 3    | RR Mean 10     | HR Std 1  | RR Mean 9   |
| 4    | RR Minimum 7   | RR Mean 7 | NIBP Mean 3 |
| 5    | RR Minimum 5   | HR Std 7  | RR Mean 10  |

Table 1. Top five features for each One Vs. Rest Random Forest classifier calculated across 10-folds. Top features are presented by signal name, metric, and hour before temperature instability. NIBP = non-invasive blood pressure, HR = heart rate, RR = respiratory rate.

### **Discussion & Conclusion**

- Based on the ROC curves and PR curves, our model showed promising predictive power for differentiating infections.
- Heart rate and respiratory rate derived features were the top features in predicting the source of infection
- Future work will be focused on the extraction of additional clinical features from physiological signals and model refinement