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about GRAND is that it can decoc.ie any code. Of people’s special interest are p occUrence count in the sequence Key steps { I Using
channels that cause errors to come in bursts. Generate the Markov channel noise | — ~ | Approach 3
How GRAND works Approach 2: Calculate probability and apply integer partitioning Add the Markow channel noise 1o the transmitred bits
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Inputs: ¥ . the observed received vector Calculate the Arrange all the I and For each | and m pait, Decode the received code-word using the GRAND algorithm
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different classes of n- | highest to the lowest N noise patterns using patterns Compare the decoded code-word with the actual code-word sent
d< 0,0 « 0. Traditional decoder: length bit sequence probability integer partitioning
while d = 0 do identify X™ using the Simulation Result
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it Y © z™ is a code-word then GRAND: Generate all integer Based on the basic patterns For the zeros to be inserted . I

X « yn o z" identify N™ by exploiting partitioning results for from last step, generate all between the bursts, also make =il
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Two conundrums of GRAND that our work hopes to solve: obtain our final noise vectors. | like the last step for the 0’s. Al
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Solutions e.g., One integer partitioning result Results: —
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Consecutive bursts must be I: # 1’s in the noise vector. will see in the next section.
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