
DECODING WITHOUT A DECODER
James Wang, Prof. A. Brinton Cooper III

Department of Electrical and Computer Engineering
Johns Hopkins University

Motivation for GRAND
Digital communications use an error correcting code to recover data transmitted
through a noisy channel that causes bit errors. But decoders can require
excessive time to decode the data. The recently proposed Guessing Random
Additive Noise Decoding(GRAND) algorithm “guesses” the binary noise vector
and, after a few attempts, usually produces error-free data. What is exciting
about GRAND is that it can “decode” any code. Of people’s special interest are
channels that cause errors to come in bursts.

Two conundrums of GRAND that our work hopes to solve:
• Model the channel noise in a way that stays true to the bursty nature

of a physical channel.

• Order all noise patterns from the most likely to the least likely.

Introduction

Inputs: 𝑌!, the observed received vector
Outputs: "𝑋, 𝑄

𝑑 ← 0, 𝑄 ← 0.
while 𝑑 = 0 do

𝑧! ← the next most likely noise vector
𝑄 ← 𝑄 + 1
if 𝑌!⊖ 𝑧! is a code-word then

"𝑋 ← 𝑌!⊖ 𝑧!
𝑑 ← 1
return "𝑋, 𝑄

end if
end while

𝒀𝒏 = 𝑿𝒏⨁𝑵𝒏

Traditional decoder:
identify 𝑋! using the
structure of code-book.

GRAND:
identify 𝑁! by exploiting
structure of channel noise.

How GRAND works

Solutions

Modeling the bursty channel: Two-state Markov Chain

When in the good state, G, the channel is
error-free and the corresponding entry in 𝑁!

is to a 0, and when the channel is in the bad
state, B, there is an error and the
corresponding entry in 𝑁! is to a 1.

The transition probability from G to B is b
and from B to G is g. An error burst is a set
of consecutive 1s in 𝑁! with its length
following geometry distribution of mean 1/g
and variance (1 − 𝑔)/𝑔!.

Notations
l: # 1’s in the noise vector.
m: # bursts of 1’s in the noise vector.

Approach 1: Using two-state Markov model to find the statistics

Set the
transition
probability

Set up the
Markov
Model

Generate a
random sequence
of bits from the

model

Divide the
generated sequence
into n-length words

Count the frequencies
of each n-length word

in the sequence

Order them from the
highest to the lowest

occurrence count

Sorted noise
patterns

Approach 2: Calculate probability and apply integer partitioning

Calculate the
probability of

different classes of n-
length bit sequence

Arrange all the l and
m pairs from the

highest to the lowest
probability

For each l and m pair,
generate all the length-
n noise patterns using
integer partitioning

Sorted noise
patterns

• The algorithm to generate all permutations for a given l and m pair

Generate all integer
partitioning results for
this pair. This gives us
all the possible burst

patterns.

Based on the basic patterns
from last step, generate all
the possible permutations,

i.e., to permute the
positions of the bursts.

For the zeros to be inserted
between the bursts, also make

use of integer partitioning,
since the number of zeros and

insertions are known.

Do the generation procedure
like the last step for the 0’s.

Assemble the 1’s and the 0’s to
obtain our final noise vectors.

• Illustration for the algorithm

To obtain all possible noise vectors
with (n, l, m) = (15, 4, 8).

e.g., One integer partitioning result
for the 1’s is:

_111__11_1__11__

e.g., One integer partitioning result
for the 0’s is:

____00__0_00__00

Assemble the two parts:
_111__11_1__11__
____00__0_00__00

Results:
111001101001100

⋮

Goal

Step 1

Step 2 Step 3

Approach 3: Analytical calculation of two-state Markov probability

1st symbol = "
1, 𝑝 = !

!"#

0, 𝑝 = #
!"#

Current state = G, the next symbol =

(1, 𝑝 = 𝑏
0, 𝑝 = 1 − 𝑏

Current stage = B, the next symbol =

(1, 𝑝 = 1 − 𝑔
0, 𝑝 = 𝑔

And so on…

When large length n, calculating
every possible sequence using this
approach would be intractable.

However, this approach is perfect
for generating a “true” noise vector
for the GRAND simulation, as we
will see in the next section.

Results

Generate a random message

Encode the message using any code-book

Generate the sorted noise patterns matrix

Generate the Markov channel noise

Add the Markov channel noise to the transmitted bits

Decode the received code-word using the GRAND algorithm

Compare the decoded code-word with the actual code-word sent

Using Approach
1 or 2

Using
Approach 3

Constraint
Consecutive bursts must be
separated by at least one 0.

More bursty

Simulation Algorithm

• GRAND vs. Theoretical (ML) in an idealized BSC channel

• GRAND performance in a Markov bursty channel

Reference

Wei An, Muriel Médard, Ken R. Duffy. “Keep the bursts and ditch the
interleavers”. IEEE Global Communications Conference, 2020.

In general, we observe that the
GRAND performance improves
for channels with increasing
memory, i.e., when g decreases.

Decreasing g, decreasing decoding errors

GRAND

ML (i.e., the theoretical limit)

Key steps

Simulation Result

