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Motivation for GRAND
Digital communications use an error correcting code to recover data transmitted 
through a noisy channel that causes bit errors. But decoders can require 
excessive time to decode the data. The recently proposed Guessing Random 
Additive Noise Decoding(GRAND) algorithm “guesses” the binary noise vector 
and, after a few attempts, usually produces error-free data. What is exciting 
about GRAND is that it can “decode” any code. Of people’s special interest are 
channels that cause errors to come in bursts.

Two conundrums of GRAND that our work hopes to solve:
• Model the channel noise in a way that stays true to the bursty nature 

of a physical channel.

• Order all noise patterns from the most likely to the least likely.

Introduction

Inputs: 𝑌!, the observed received vector
Outputs: "𝑋, 𝑄

𝑑 ← 0, 𝑄 ← 0.
while 𝑑 = 0 do

𝑧! ← the next most likely noise vector
𝑄 ← 𝑄 + 1
if 𝑌!⊖ 𝑧! is a code-word then

"𝑋 ← 𝑌!⊖ 𝑧!
𝑑 ← 1
return "𝑋, 𝑄

end if
end while

𝒀𝒏 = 𝑿𝒏⨁𝑵𝒏

Traditional decoder:
identify 𝑋! using the 
structure of code-book.

GRAND:
identify 𝑁! by exploiting 
structure of channel noise.

How GRAND works

Solutions

Modeling the bursty channel: Two-state Markov Chain

When in the good state, G, the channel is 
error-free and the corresponding entry in 𝑁!

is to a 0, and when the channel is in the bad 
state, B, there is an error and the 
corresponding entry in 𝑁! is to a 1. 

The transition probability from G to B is b 
and from B to G is g. An error burst is a set 
of consecutive 1s in 𝑁! with its length 
following geometry distribution of mean 1/g 
and variance (1 − 𝑔)/𝑔!.

Notations
l: # 1’s in the noise vector.
m: # bursts of 1’s in the noise vector.

Approach 1: Using two-state Markov model to find the statistics

Set the 
transition 
probability

Set up the 
Markov 
Model

Generate a 
random sequence 
of bits from the 

model

Divide the 
generated sequence 
into n-length words

Count the frequencies 
of each n-length word 

in the sequence

Order them from the 
highest to the lowest 

occurrence count

Sorted noise 
patterns

Approach 2: Calculate probability and apply integer partitioning

Calculate the 
probability of 

different classes of n-
length bit sequence

Arrange all the l and 
m pairs from the 

highest to the lowest 
probability

For each l and m pair, 
generate all the length-
n noise patterns using 
integer partitioning

Sorted noise 
patterns

• The algorithm to generate all permutations for a given l and m pair

Generate all integer 
partitioning results for 
this pair. This gives us 
all the possible burst 

patterns.

Based on the basic patterns 
from last step, generate all 
the possible permutations, 

i.e., to permute the 
positions of the bursts.

For the zeros to be inserted 
between the bursts, also make 

use of integer partitioning, 
since the number of zeros and 

insertions are known. 

Do the generation procedure 
like the last step for the 0’s.

Assemble the 1’s and the 0’s to 
obtain our final noise vectors.

• Illustration for the algorithm

To obtain all possible noise vectors 
with (n, l, m) = (15, 4, 8).

e.g., One integer partitioning result 
for the 1’s is:

_111__11_1__11__

e.g., One integer partitioning result 
for the 0’s is:

____00__0_00__00

Assemble the two parts:
_111__11_1__11__
____00__0_00__00

Results:
111001101001100

⋮

Goal

Step 1

Step 2 Step 3

Approach 3: Analytical calculation of two-state Markov probability

1st symbol = "
1, 𝑝 = !

!"#

0, 𝑝 = #
!"#

Current state = G, the next symbol = 

( 1, 𝑝 = 𝑏
0, 𝑝 = 1 − 𝑏

Current stage = B, the next symbol = 

(1, 𝑝 = 1 − 𝑔
0, 𝑝 = 𝑔

And so on…

When large length n, calculating 
every possible sequence using this 
approach would be intractable. 

However, this approach is perfect 
for generating a “true” noise vector 
for the GRAND simulation, as we 
will see in the next section.

Results

Generate a random message

Encode the message using any code-book

Generate the sorted noise patterns matrix

Generate the Markov channel noise

Add the Markov channel noise to the transmitted bits

Decode the received code-word using the GRAND algorithm

Compare the decoded code-word with the actual code-word sent

Using Approach 
1 or 2

Using 
Approach 3

Constraint
Consecutive bursts must be 
separated by at least one 0.

More bursty

Simulation Algorithm

• GRAND vs. Theoretical (ML) in an idealized BSC channel

• GRAND performance in a Markov bursty channel
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In general, we observe that the 
GRAND performance improves 
for channels with increasing 
memory, i.e., when g decreases.

Decreasing g, decreasing decoding errors

GRAND

ML (i.e., the theoretical limit)

Key steps

Simulation Result


