
Introducing a Foundational Framework for Intelligent Baseball Scheduling
Peiyuan Xu[1][2], Kyoungjin Lim[2], Antwan D. Clark[1][3], and Anton Dahbura[2][3]

[1] Applied Mathematics and Statistics Department, [2] Department of Computer Science, [3] Institute for Assured Autonomy

Johns Hopkins University

Conclusion 

We demonstrated a foundational framework for intelligent baseball

scheduling, where we incorporated various immovable constraints to

illustrate the fidelity of the MDP. Some future explorations include more

robust testing to include both required and desired constraints as well as

exploring reinforcement learning strategies from this schema.

Developing a fair and balanced baseball schedule is a challenging problem.

This is because the appropriate balance between required and desired

needs to be obtained while ensuring that these constraints are both applied

and satisfied. Additionally, alternative measures need to be made to

account for cases when certain combination of constraints applied together

create an unsatisfactory schedule. This work addresses these limitations via

first presenting a foundational framework for intelligent baseball scheduling

that include the following.

1. Developed a Python-based constraint library that describes required

constraints.

2. Modeled the incorporation of required constraints as a Markov decision

process.

3. Developed a custom AI Gym environment that demonstrates this

process, where we also leverage state-of-the art operations research

(OR) tools (e.g., Google OR tools).

Our results using specific constraints for the High-A Central Baseball 

League demonstrate promise in this framework, which is built via the Open 

Artificial Intelligence (AI) Gym Environment.

Scheduling for baseball leagues need to satisfy a variety of constraints that

are organized by the following categories.

1. Required (or immovable) constraints – Constraints that must be satisfied

to produce workable timetables.

2. Desired (or movable) constraints – Constraints that don’t need to be

satisfied to produce workable timetables.

Each of these categories also contain other types of constraints including

those based on the following: 1.) the uniqueness of home play; 2.) the

number of games played within a specific region; 3.) how opponents are

scheduled; and 4.) schedule fairness.

Previous advancements to this problem have been made via various

combinatorial optimization methods such as semi-definite programming,

integer programming, and heuristic methods. However, these demands do

not completely consider real-time scheduling demands and changes that

are typically league-specific.

Results

The goal of our testing strategy is to robustly test the proposed 

MDP process consisting of the following steps. 

1. We incrementally step through the environment to determine if 

each state in the MDP is implemented correctly. 

2. We recorded each state, action, and next state of the MDP 

where we checked to see if the constraints were added and 

satisfied successfully. 

We do this for random types of immovable constraints (from the 

High A Central Baseball League requirements). Here, we also 

leveraged Google OR tools to perform optimization via a Python-

based constraint library that we developed.  

AI Gym Framework

We created the following Markov decision process (MDP) for 

immovable and movable constraints.

• The state space 𝑺 includes the number and type of constraints 

added and satisfied to the baseball schedule. 

• The action space 𝑨 includes the number of constraints either added 

+ , deleted − , or modified/substituted 𝑚 . If the constraints are 

immovable, the action is only substituted. Otherwise, the action can 

either be modified and/or substituted. 

• The rewards 𝑹 are defined as follows: 1.) +100 for each constraint 

added and satisfied and 2.) +50 for each constraint added and 

satisfied where at least one constraint is modified. 

Introduction 

Abstract Theoretical Development

The following is an example 

schedule (in Excel), where 

five immovable constraints 

were satisfied and added as 

a result of the MDP process. 

Additional Questions?

Peiyuan Xu (pxu11@jhu.edu), Kyoungjin Lim (klim30@jhu.edu)

Dr. Antwan D. Clark (aclark66@jhu.edu)

Dr. Anton Dahbura (anton.dahbura@jhu.edu)

Testing Strategy

Transition Sketch of the Proposed MDP 

Initialization

1. Defines the initial number of  immovable constraints 

and how many of these constraints are satisfied. 

2. The Python constraints library is incorporated into this 
environment via providing each constraint with 

numerical unique identifiers (UIDs) to construct each 

state in the MDP. 

3. The rewards are also defined in this step initializing 
the MDP.

Reset

The AI Gym environment is reset for further use. 

Step

1. The actions add (+ ) , remove (−) , and modify ( � ) are 

defined in this step where each constraint and type of 

constraint is added to the optimization problem. 

2. Constraint satisfaction measures are enforced to 

ensure that each constraint and the collection of 
constraints are satisfied. 

3. Incremental rewards are appropriated with each step 

in the environment as it goes from one state to the 
next.

Render

1. The states associated with the number and type of 

constraints added and satisfied are presented as 
output, which is associated with each state.  

2. The accumulated rewards are also displayed along 

with the metrics computing the percentage of these 

constraints are satisfied.

3. The schedule is finalized and written to a timetable 
in comma separated value (CSV) format.

mailto:pxu11@jhu.edu
mailto:klim30@jhu.edu
mailto:aclark66@jhu.edu
mailto:anton.dahbura@jhu.edu

