Dynamic Risk Prediction of Cardiac Inflammatory Syndrome
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I | Result 1. Machine learning models can effectively predict if the patient will be admitted to ICU within 48 hours at the time of evaluation.
IMode' Makes Dynamic Prediction on Snapshot Models use discrete time-point clinical features. Window Models use both discrete time-point and engineered time-series clinical
features. Areas under each curve are noted on the legend. (A) Receiver-operator characteristic curves of Snapshot Models. (B) Receiver-
operator characteristic curves of Window Models with 3-day sampling window. (C) Precision-recall curves of Snapshot Models. (D) Precision-
recall curves of Window Models with 3-day sampling window.
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o I ______________ I ______________ } _____ ) Result 2. XGBoost and Random Forest Result 3. Machine learning models reveal the feature importance levels associated with CIS.
: N N A B | I Window Models can be well calibrated via | The plot shows 15 most important features measured by Shapley Additive Explanations (SHAP)
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Selection of Best Model PRAUC AUROC represents area under

eceiver-onerator I1l. Machine learning models reveal clinical features that drive the
The data used for this study is collected by the International Bl XGBoostSnap [J XGBoost 3d ] .p , risks associated with CIS.
Kawasaki Disease Registry Consortium (IKDR). Bl XGBoost 1d [1 XGBoost 5d Characteristic curve.
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