Developing a predictive model for
conversion of Age-Related Macular

Degeneration Deep learning with multimoadal
data can predict imminent conversion
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to wet Age-Related Macular

AGE RELATED MACULAR DEGENERATION (AMD):
Leading cause of vision loss in persons over 50 -t
300 million people will have AMD globally by 2040 [1] D ege nera tl On.
All patients start with the dry form and some will
convert to wet AMD which causes central vision loss
Optical Coherence Tomography (OCT) scans are used to
diagnose and manage the disease [2]
Early intervention is crucial for treatment success [1]
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PROBLEM: Retinal specialists can only provide average risk
estimates for conversion from dry to wet AMD over 5
vears; these estimates are not fine-grained enough to
provide meaningful, actionable information.

Macula

Pupil

Optic disc
(blind spot)

Blood vessels

. \

Cornea

NEED: Clinicians need a way to predict if a patient will
convert to wet AMD prior to their next screening, which is
typically every 6 months. This will allow for earlier
intervention, leading to improved treatment outcomes.
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Including multimodal data increases diagnostic specificity for predicting conversion.
METHODS:

Comparison of Model ROCs Model Performance Metrics
1.00 -
MLP multimodal {
OCT Scans
CNN OCT
l 3D Convolutional _,(B 0.75
Neural Network &5
O RF multimodal -
2
45; 0.50 -
Dcz RF clinical -
Clinical Data %
Visn2|al Age FeIIO\_N.eye I: ) XGBOOSt mU|timOda| .
L e 0251 177 7 - wip multimodal (auc: 0.75)
Patient 1 ‘/," — CNN OCT (aUC: 075)
AR = RF multimodal (auc: 0.72) .
-+ RF clinical (auc: 0.59) XGBoost clinical -
Patient N o - XGBoost multimodal (auc: 0.70)
0.004 .” -+ XGBoost clinical (auc: 0.63) , : : : — : : : - — . . . :
— - - - : 0 25 50 75 100 O 25 50 75 100 O 25 50 75 100
0.00 0.25 0.50 0.75 1.00
False Positive Rate Balanced Accuracy (%) Sensitivity (%) Specificity (%)

Incorporating multimodal data in a neural network boosts performance for predicting first eye
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