

Early Prediction of Length of Stay in Hospitalized **Patients with Stroke and Traumatic Brain Injury**

Heramb Gupta¹; Darsh Patel¹; Shreya Hari¹; Steven Solar¹; Nihao Sun¹; Runtian Tang¹; J. L. Greenstein¹; C. O. Taylor¹; R. D. Stevens² ¹Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA

²Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Background

Stroke is one of the leading causes of morbidity and mortality worldwide, and traumatic brain injury (TBI) is one of the major causes of disability in children and young adults. ICU length of stay (LoS) is considered a primary driver of inpatient costs. The prediction of length of stay in the early phase of hospitalization can inform resource allocation and improve clinical decision-making to ultimately reduce medical spending

Objectives

- 1. To use patient data available in the first 24 hours of stay to predict length of stay (LOS) for patients with traumatic brain injury and stroke in the Neuro Critical Care Unit (NCCU).
- To identify and rank predictive features driving the LOS.

Methods

n					
S					
n					
1			4660 Patient		
a			Encounters		
e					► 8<18yrs
it					
f			4652 >18yrs		
1					
У	- f		_		
S	625 TDI		2700 Stroko		226 Pot
v	323 151		3735 STORE		520 000
1					
21		t	*		
G		285 Intra	1052	139 Sub	
3		Cerebral	Ischemic	Arachnoid	
c		Hemormage	Suoke	Hemonnaye	
0					
1.	*		· · · · ·	· • • • • • • • • • • • • • • • • • • •	
1	233 First	192 First	633 First	103 First	
1	Admissions	Admissions	Admissions	Admissions	

Support Vector Machine outperforms Logistic Regression

Input Features and Output Labels

- There were 132 input features consisting of Clinical and physiologic data available in the first 24h after admission which were used to train different ML classifiers to predict LOS (output variable)
- Patients were classified as a 1 if their LOS was in the highest quartile (or death) and 0 otherwise.

IOHNS HOPKINS

(ENGINEERING

The Glasgow Coma Scale (GCS) is the most important feature in predicting NCCU Length of Stay.

SVM Performance for different patient groups

dels		Entire Cohort	тві	Stroke	lschemic Stroke	Intra Cerebral Hemorrhag e	Sub Arachnoid Hemorrhag e			
Mc	No. of Features	132	115	139	136	124	121			
S	Cutoff (in days)	4.60	3.06	5.03	3.90	6.01	14.78			
ΓC	AUC ROC	0.897	0.852	0.830	0.715	0.900	0.500			
int	AUC PR	0.822	0.780	0.756	0.629	0.733	0.607			
ere	F1 Score	0.842	0.895	0.795	0.769	0.864	0.786			
iff	The best performing model –Support Vector Machine is that									
\square	for the ont	for the antire nationt appart which has information about TPI								

The best performing model –Support Vector Machine is that for the entire patient cohort which has information about TBI and stroke types as input features.

Conclusions

Accurate predictions about length of stay for NCCU can be made using patient data available in the first 24 hours. Considering an average cost of 4000\$ per day in the NCCU, cost of stay can be estimated

Future Scope

The models will be validated on external available ICU datasets. Quantification of length of stay may correlate with NCCU cost, and the complex relationship between the two may be quantified further.