Predicting Anti-VEGF Therapy Response in Wet-AMD Patients

Tawsifur Rahman1, Justin Lanan1, Alexandra Gorham1, Elizabeth Zuerblis1, Alejandro Escobosa1, Trisha Karani1, Scott Song2, Neslihan Koseoglu1, Joseph Greenstein1, Casey Taylor1,2, Craig Jones2, Alvin Liu2

1JOHNS HOPKINS BIOMEDICAL ENGINEERING, 2JOHNS HOPKINS MEDICINE

BACKGROUND

Age-related Macular Degeneration (AMD) is predicted to affect almost 300 million people globally by 2040. Wet AMD rapidly progresses to blindness and accounts for about 90\% of blindness due to AMD.

Wet AMD's gold-standard treatment is lifelong anti-VEGF intravitreal injections, but about 10-20\% of patients are unresponsive to this therapy. For many patients, efficacy can currently be assessed after 3 injections.

DATA

566 Eyes | 487 patients
Average Age: 79 years (SD = 9)
Sex: 63\% Female
Race: White, Black, Asian, Native American, Other, Unknown

Medication: Aflibercept, Bevacizumab, Ranibizumab

CLASSIFICATION

After 3 injections, classes are:
- Strong: ΔETDRS > 5
- Moderate: -5 ≤ ΔETDRS ≤ 5
- Poor: ΔETDRS < -5

CONCLUSION

3D residual networks are promising tools for classifying anti-VEGF therapy responses as poor, moderate, and strong. Incorporating time series OCT images and additional clinical features has the potential to enhance the accuracy of predictions, leading to more personalized treatment plans for patients.

Accurately predicting anti-VEGF treatment response could aid healthcare professionals in making more informed decisions regarding future injections and overall treatment strategies, ultimately improving patient outcomes.

BINARY CLASSIFICATION RESULTS

Can Poor responders be distinguished from all others?
Can Strong responders be distinguished from all others?

DEEP-LEARNING ARCHITECTURE

We are creating a machine learning model that is capable of predicting wet AMD patients' responses to anti-VEGF therapies to help ophthalmologists choose optimal treatments on a personalized basis for each patient before they suffer irreparable eye damage.