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Future Directions
This is the conclusion of our work with polyhedral passages. We have 
implemented our nonsmooth optimization algorithm on the three major 
classes of polyhedron within the field (Archimedean, Johnson, and Catalan), 
and have discovered many new lower bounds for the maximum rescaling of 
these polyhedra, even  disproving potential counterexamples of shapes 
thought to not have Rupert's Property. While our results do not lead us to any 
breakthroughs in engineering applications, the use of gradient ascent to attack 
nonsmooth optimization in many dimensions is a novel process within this 
subfield that has pushed the boundaries on Rupert's Property. We are thrilled 
with everything we have accomplished and are excited to see the bounds of 
all polyhedron continue to increase.

Surprisingly, given two equally large cubes, one can pass the first through a 
hole strictly inside the second. This property was first shown by Prince 
Rupert of the Rhine in the 17th century. This isn't a unique property of cubes, 
rather, it is holds for many polyhedrons, motivating the question:
 

Does every Polyhedron have a Polyhedral Passage?

Rotations and Translations as Variables x
Two initial copies of a shape, they need to be moved and spun in some way 
for one to pass strictly through the other. We can describe all possible 
movements as rotating the shapes in 3D via rotations around the X, Y, and Z 
axes (using 2D rotation matrices), and translating in the X and Y directions. 
In our code, we fix that the passage will happen in the Z direction. Hence the 
Z coordinate does not need to be translated. This leaves eight parameters 
describing any possible passage, which we collect in a vector "x".

The Largest Possible Rescaling: µ(x)
For given rotations and translations x, we define "µ(x)" to be the function that 
finds the largest rescaling of the inner shape (e.g., the cube making the 
passage) that strict fits through the other. We compute this by it iterating 
edge by edge over the outer shape to see how much the inner shape could 
be rescaled in while fitting within that edge. Finally, it returns the smallest 
rescaling value it found over all of these edges, giving us the largest value for 
which this translated and rotated inner shape could be dilated by and still fit 
within the other rotated outer shape.

Maximizing µ(x) via Gradient Ascent
We make use of gradient ascent optimize our "µ(x)“. From a given 
initialization of the translation/rotation parameters, we numerically calculate 
the gradient in each direction and then move an amount "α“ in that direction. 
We repeat this process many times until a local maximum of µ(x) is reached
(improvements with backtracking and stopping criterions were also used):

Our Newly Proved Archimedean Solid

Using Matplotlib, we can visualize the polyhedral passage given 
by each parameter selection x. The 2D plots the projected 
“shadow” of each shape and the 3D plots show the actual shapes.

Our goal is to have the red cube pass strictly within the blue cube. 
The 2D plots show the shadows of both the red and blue cubes by 
dropping their Z coordinates. In theory, we want to pass the red 
cube through a hole in the blue cube, with our rescaling value 
telling us how much larger we can make the red cube such that it 
still passes strictly through the hole in the blue cube.

Below we show failed, marginal and successful passages.

2D and 3D Plots of Passages

Methodology: Optimizing Polyhedral Passages

A 400 Year Old Geometry Question Improvements on Archimedean Solids

In 1983, mathematicians [1] began to 
approach this problem algorithmically, 
seeking to find the largest (rescaled) 
copy of a given polyhedron that can pass 
strictly through itself. As recently as 
2021, probabilistic techniques were tried 
and conjectured a counterexample: the 
rhombicosidodecahedron [2]. We aim to 
answer this question via more efficient 
algorithm for computing the largest 
rescaling for any given polyhedron.

A Failed Passage: µ(x) < 1

A Marginal Passage: µ(x) = 1

Successful Passage: µ(x) > 1
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Solid Old Best New Best
Rhombicosidodecahedron < 1 1.00135024

Tetrahedron 1.014473 1.01459894

Icosahedron 1.010805 1.01081856

Truncated Icosahedron 1.001955 1.00196198

Truncated Cuboctahedron 1.006563 1.00658547

The Rhombicosidodecahedron 
has 62 faces: 20 triangular, 30 
square, and 12 pentagonal, with 
60 vertices and 120 edges. While 
it was believed by many to not 
follow Rupert's Property, we 
found that we can make it 0.1% 
larger and still find a passage. It 
also gives us hope that every 
Archimedean Solid follows 
Rupert's Property; while we are 
still missing a lower bound for 
two of the 13 Archimedean 
Solids, we still believe that either 
through higher precision or 
different methods these two 
shapes can be reached as well.


	Slide Number 1

