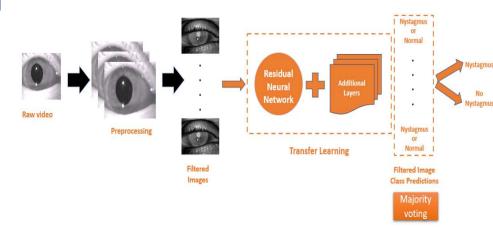
JOHNS HOPKINS BIOMEDICAL ENGINEERING Machine Detection of Nystagmus from Video Recordings Sanchine Detection of Nystagmus from Video Recordings Sanchine Detection of Nystagmus from Video Recordings

S

Team Pink


Kemar E. Green DO^{1,4}, Narayani Wagle^{2,} John Morkos^{3,4}, Jingyan Liu³, Joseph Greenstein PhD⁵, Kirby Gong⁴, Indranuj Gangan⁴, Daniil Pakhomov², Sanchit Hira², Jorge Otero-Millan PhD^{1,6}, Oleg Komogortsev PhD⁷, David E. Newman-Toker MD/PhD^{1,8,9}, Raimond Winslow PhD^{2,4,10}, David S. Zee MD^{1,8,11}

¹Department of Neurology, The John Hopkins University School of Medicine, Baltimore, Maryland, USA; ³Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland, USA; ³Department of Biomedical Engineering, The John Hopkins University, Baltimore, Maryland, USA; ³Department of Biomedical Engineering, The John Hopkins University, Baltimore, Maryland, USA; ³Department of Biomedical Engineering, The John Hopkins University, Baltimore, Maryland, USA; ³The Johns Hopkins University, Baltimore, Maryland, USA; ³School of Optical California-Erkeley, Berkeley, CA, USA; ³Department of Computer Science, Taxa State University, Sand Marcos, The John Hopkins University, Baltimore, Maryland, USA; ³Pine John Hopkins University, School of Medicine, Baltimore, Maryland, USA; ³The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA; ³Departments of Optithalmology and Otolarygology, The John Hopkins University School of Medicine, Baltimore, Maryland, USA; ³Departments of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ³Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical and Computer Engineering, The John Hopkins University, Baltimore, Maryland, USA; ⁴Department of Electrical Electrical and Computer En

Introduction

- Nystagmus is an abnormal eye movement that reflects a physiologic change in neural circuitry that connects the inner ear, brain, and the eye.
- Nystagmus precedes MRI changes by 48-72 hours in stroke patients presenting with isolated dizziness or vertigo.
- Nystagmus identification and interpretation can be challenging for non-specialists.
- Nystagmus identification/interpretation is difficult via telemedicine.

Conclusions

Nystagmus can be detected from low quality videos using deep-learning methods and can be useful for remote diagnosis of dizzy patients in a pandemic, as well as becoming a permanent feature of healthcare delivery

Future Direction

- 1. Detection of other eye movement abnormalities
- 2. Home-based neurologic screening/diagnosis
- 3. Tele-neuroophthalmology & Teleneurootology

Acknowledgments

We would like to thank the Johns Hopkins Neurology Department & the Neuro-Visual & Vestibular Disorders (NVV) division for supporting the project

References

1.	Cheurg CSK, Mak PSK, Manley KV, et al. Predictors of important neurological causes of diziness among patients presenting to the emergency department. Imerg Med J IML
2010	(27517–521.
2.	Newman-Toler CB, Cannon LM, Stefferahn ME, Rothman RE, Haleh Y-H, Zee CS. Imprecision in patient reports of dizziness symptom quality: a cross-sectional study conducted in an
acuti	care setting. Mayo Clin Proc. 2007;02:1329–1340.
3.	Newman-Toler CE, May E, Valente E, Coffey R, Hines AL. Missed diagnosis of stroke in the emergency department: a cross-sectional analysis of a large population-based sample.
Dugt	sosis. 2014;1:155–186.
i.	Newman-Toler CE, Huleh Y-H, Camargo CA, Pelletier AJ, Butchy GT, Edlow JA. Spectrum of diziness visits to US emergency departments: cross-sectional analysis from a nationally
Vipri	sentiative sample. Mayo Clin Proc. 2008;83:785–775.
s. 596.	Saber Tehrani AS, Coughlan D, Haleh HL, et al. Riang Annual Costs of Dizziness Presentations to U.S. Emergency Departments. Schneider S, editor. Acad Emerg Med. 2013;20:689-
Б.	Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology. 2018;91:958–966.
7.	Ratah X., Talkad AV, Wang DZ, Hish YH, Newman-Toler CE. HINTS to diagnose stroke in the acute vestibular syndrome: three-stepbediade oculomotor examination more sensible
than	early MIII diffusion-weighted imaging. Stroke. 3009;40:3504–3530.
t. Vied	Newman-Toler CE, Kerber KA, Haleh Y-H, et al. HINTS outperforms ABCD2 to screen for stroke in acute continuous vertigo and dizziness. Acad Emerg Med OFF J Soc Acad Emerg 2013;20:586–596.
9.	Leigh RJ, Zee DS. The neurology of eye movements. 5th edition. Oxford ; New York: Oxford University Press; 2015.
10. 18.	Green KE, Pogeon JM, Otero-Millan J, et al. Opinion and Special Articles: Remote Evaluation of Acute Vertigs: Strategies and Technological Considerations. Neurology. 2022;96:34-
	Rucker X, Zeo DS. Greebelum—Editorial Reporting Consensus Paper Consensus on Virtual Management of Vestibular Disorders: Upgent Versus Dapedited Care. Shakh et al., 7/10.1007/12331-000-0178-8: The Return of the House Call: Evaluating Acadegi II Patients with Werligo in the Erea of Versual Health Care. The Cerebelium. Epub 2020 Sep 9311-000 OLIV-4:
12.	Shakh AG, Bronstein A, Carmona S, et al. Consensus on Virtual Management of Vestibular Disorders: Urgent Versus Expedited Care. The Cerebellum (online serial). Epub 2020 Aug
14. A	consed at: http://link.springer.com/10.1007/s12311-020-01178-8. Accessed August 20, 2020.
13.	Renhardt 5, Schmidt 1, Leuzchel M, Schüle C, Schipper J. VertiGo – a pilot project in nyntagmun detection via webcam. Curr Dir Biomed Eng (online serial). 2020;5: Accessed at:
http:	-//www.degnutec.com/view/journalu/cdbme/f21/article-20200043.xml. Accessed October 20, 2020.
14.	Pursganti SA, Tun J, Otens-Millan J. Automatic quick-phase detection in beduide recordings from patients with acute dazhess and nystagmus. Proc 12th ACM Symp Eye Track Res
Appl	[online]. Denver Colorado: ACM 2010: p. 1–3. Accessed at: https://dl.acm.org/do/10.1145/5334111.3322873. Accessed October 20, 2020.
15.	AVERT Clinical Trial (online). Accessed at: https://clinicaltrials.gov/ct2/show/NCT02483429.
16.	853 impulse [online]. Accessed at: https://hearing-balance.natus.com/en-us/products-services/ex-impulse.
17.	Aeev I, Park H5, Shekkh Y, Hodgins J, Shamir A. Automatic editing of footage from multiple social cameras. ACM Trans Graph. 2014;33:1–11.
п.	Hancock IT, Khoshgoftaar TM. Survey on categorical data for neural networks. J Big Data. 2020;7:28.
19.	Dorgwei Cao, Masoud OT, Boley D, Paparikoloposlos N. Online motion classification using support vector machines. IEEE Int Corf Robot Autom 2004 Proc ICRA04 2004 [online].
New	Orleans, IA, USA: IEEE, 2004. p. 2291-2296 Vol.3. Accessed at: http://weekplore.ieee.org/document/1107400/. Accessed November 11, 2020.
20.	Chaves E, Gonçalves CB, Albertini MK, Lee S, Jeon G, Fernandes HC. Evaluation of transfer learning of pre-trained CNNs applied to breast cancer detection on infrared images. Appl
Opt.	2020;59:12:3.
21.	Liu TVA, Ting DSW, Yi PH, et al. Deep Learning and Transfer Learning for Optic Disc Latenality Detection: Implications for Machine Learning in Neuro Ophthalmology. J
Neur	oophthalmol. 2020;40:178–184.
22.	Nae B. Fu J. Lane J. Residual Recurrent Neural Networks for Learnine Sequential Recresentations. Information. 2018;9:56.

Accuracy

84.21%

84 21%

84.21%

Innovation & Significance

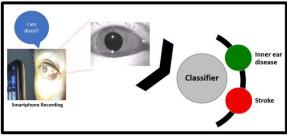
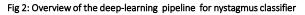



Fig1: Overview of design demonstrating a smartphone-enabled remote dizziness triage system

Methods

- □ We developed a deep-learning system (Fig 2) to classify 60 Hz recordings (n=435) as videos with nystagmus or video without nystagmus.
- □ The performance of the model (Fig 3) was calculated using the area under the receiver operating characteristic curve (abbreviated AUC) with sensitivity, specificity, negative(NPV) and positive (PPV) predictive values.

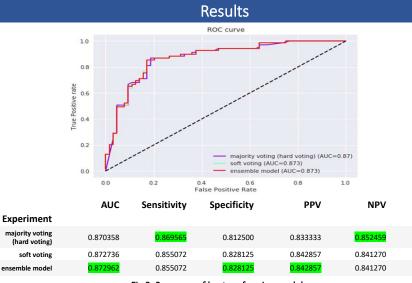


Fig 3: Summary of best performing models