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Introduction

U Nystagmus is an abnormal eye movement that reflects a
physiologic change in neural circuitry that connects the
inner ear, brain, and the eye.

U Nystagmus precedes MRI changes by 48-72 hours in stroke
patients presenting with isolated dizziness or vertigo.

U Nystagmus identification and interpretation can be
challenging for non-specialists.

U Nystagmus identification/interpretation is difficult via
telemedicine.
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Figl: Overview of design demonstrating a smartphone-enabled
remote dizziness triage system

Methods

U We developed a deep-learning system (Fig 2) to
classify 60 Hz recordings (n=435) as videos with
nystagmus or video without nystagmus.

UThe performance of the model (Fig 3) was calculated
using the area under the receiver operating
characteristic curve (abbreviated AUC) with sensitivity,
specificity, negative(NPV) and positive (PPV) predictive
values.
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Conclusions

Nystagmus can be detected from low quality
videos using deep-learning methods and can
wms  De useful for remote diagnosis of dizzy patients
in a pandemic, as well as becoming a
No permanent feature of healthcare delivery
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Fig 2: Overview of the deep-learning pipeline for nystagmus classifier neurootology
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Experiment
majority voting
T 0.870358 0.869565 0.812500 0.833333 0.852459 84.21%
soft voting 0.872736 0.855072 0.828125 0.842857 0.841270 84.21%
ensemble model 0.872962 0.855072 0.828125 0.842857 0.841270 84.21%

Fig 3: Summary of best performing models




