Maneleva: Redefining Arthroscopy

Sneha Kamada1, Samhita Vasu1, Betul Celiker1, Esanika Mukherjee1, Matt Kunkler2, Ben Miller1, Pranav Sundararajan1, Natasha Porwal1, Aditya Bhade1, Dr. Nicholas Durr1, Dr. Alexander Johnson1, Dr. Alexander Loeb3, Dr. Matthew Best1, Dr. Adam Levin3

Project Background

Knee arthroscopy is a minimally invasive procedure performed more than 1.77 million times yearly.1 Though efficient and low-risk, these procedures are known for awkward positioning and difficult visualization of certain joint spaces like the posterior compartment of the knee. The Gillquist maneuver accesses this space by inserting the scope between the medial femoral condyle and posterior cruciate ligament or above the medial meniscus.2

25% of Gillquist maneuvers result in damage to the knee and often fail to provide sufficient visualization, leading to many procedures being conducted without visualization.3 This project improves upon the rigid arthroscope by adding flexibility to improve visualization.

Design Requirements

Must Haves:
1. Increase visualization compared to the rigid arthroscope
2. Not larger than 4-6 mm in diameter
3. Does not significantly increase learning curve

Need Statement

Orthopedic surgeons need a more effective method of accessing the posterior compartment while performing arthroscopic knee surgery that increases visualization within the posterior joint space.

Testing/Results

Angled Visualization Model

![Rigid Visualization Model](image1.png)

![Flexible Visualization Model](image2.png)

Figure 1: Sample results from angled visualization tests

The flexible prototype acquired greater visualization at a closer proximity for all angled mazes.

Gillquist Maneuver Model

![Anatomical Box Model](image3.png)

Figure 2: Anatomical box model based on Gillquist maneuver: inserting the scope under the femoral condyle and over the meniscus.

Testing with the box model resulted in a minimal learning curve and fewer collisions for the flexible scope. The flexible scope demonstrated better visualization capacity of the back of the box than the rigid scope.

Final Device Design

![Final Design](image4.png)

Figure 3: Final design

The final device design is a fully flexible scope with a maneuverable tip (with at least 130 degrees of rotation) encased within a rigid cannula. The flexible tip will be controlled with a lever in one-hand controlling up-down motion and with manual rotation for right-left movement.

Future Directions

- Improve rigid borescope to represent angled lens
- Transition to medical grade ureteroscope
- Test borescope in cadavers with clinician assistance

References

1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA, 2 Johns Hopkins School of Medicine, Division of Orthopedic Surgery, Baltimore MD, USA