Engineering Inverted Architecture Colloidal Quantum Dot Solar Cells

Dana Kachman¹, Arlene Chiu¹, Susanna M. Thon¹
¹Department of Electrical and Computer Engineering
Johns Hopkins University

Abstract

Motivation.
- Colloidal quantum dots (CQDs) are a promising material for use in solar cells because their band gap can be tuned by tuning the CQD size.
- Currently, the hole transport layer (HTL) is limiting the performance of CQD solar cells, and 2D WSe₂ is a promising candidate as a replacement HTL.
- 2D WSe₂ cannot easily be incorporated into the standard CQD solar cell architecture because many deposition methods use either high temperatures or aqueous solutions, both of which can damage CQD films.
- In an inverted architecture device, the HTL is deposited before the CQD absorbing layer, enabling us to more easily deposit 2D WSe₂ without damaging the CQDs.

Methods.
Simulations: SCAPS/TMM, transfer matrix method (TMM) calculations²
Fabrication: Colloidal synthesis, spin-casting, evaporation
Measurements: Illuminated current-voltage (JV) testing

Results.
- SCAPS/TMM simulations of device performance show that an optimized inverted device can almost match the performance of a standard device.
- TMM calculations show increased absorption in the HTL of an inverted device which is a reason for the marginally decreased performance seen in an inverted device.
- We experimentally demonstrated a working inverted CQD solar cell and are now optimizing the performance.

Introduction

The structure of a standard CQD solar cell is as follows, starting from the glass substrate side: transparent conductive electrode, electron transport layer (ETL), absorbing layer, hole transport layer (HTL), top electrode. For an inverted device, the location of the HTL and ETL are switched. Additionally, the contact materials are changed². Both structures are shown in Figure 1a below.

The standard materials are as follows: indium or fluorine tin oxide (ITO/FTO) as the transparent conductive electrode, electron transport layer (ETL), absorbing layer, hole transport layer (HTL), top electrode. For an inverted device, the current HTL is made of CQDs, which absorb light strongly, there can be significant absorption in the HTL, hurting the solar cell’s efficiency. This effect is more pronounced in an inverted device, especially at shorter wavelengths. This is because in an inverted device the HTL is closer to the illumination plane (vs. farther away from the illumination plane in the standard architecture).

Our goal to use 2D WSe₂ as an HTL are ongoing.

Device Testing

Simulations: SCAPS/TMM simulation sweeps of (b) absorbing layer and (c) HTL thickness.
For these simulations, TMM calculations were used to produce photogeneration rates for the structure. This information was then input to SCAPS simulations to produce the data for the JV curves.

References

Acknowledgements
This work was funded by the National Science Foundation (DMR-1807342) and the Department of Defense Center for Excellence in Advanced Electro-Photonics with 2D Materials (Cooperative Agreement Number: W911NF2120213).