Designing a Biodegradable Biliary Stent for Treatment of Biliary Stricture

Alice Lee¹, Pio Kim¹, Jenny Pham¹, Christopher Shubert², Timothy Weihs³, Orla Wilson¹

¹Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; ²Department of Otolaryngology and Surgery, Johns Hopkins Hospital Hepato-Pancreato-Biliary Surgery Program, Baltimore, MD 21287, USA

Background:

The Problem

Biliary stricture is an abnormal narrowing of the bile duct and can lead to inflammation of organs as well as bacterial infections within the liver. Current treatments use metal or plastic stents but require repeated ballooning procedures to ensure the continuous expansion of the duct over several months and a final surgery to remove the stent. This significantly hampers patient quality-of-life and increases their risk to post-operation complications.

Our Solution

We propose the use of a biodegradable stent made of a WE43 Magnesium-based alloy wire.

We hypothesize that our stents should maintain structural integrity but show some color change as a physical indication of degradation.

Design Requirements:

Self-Expanding: ~50-75% increase in diameter
- Relieves biliary stricture
- Biodegradable: Slow degradation over 8-12 months
- Negates the need for surgical removal following recovery

Good Mechanical Properties: Must maintain constant radial force
- Necessary to dilate bile duct to aid biliary stricture

Methods:

We hypothesize that our stents should maintain structural integrity but show some color change as a physical indication of degradation.

Results:

Degradation Behavior

Stiffness Testing

Figure 4: WE43 Braids after Day 0, 3, 7, and 14 of Corrosion

*Braids are in expanded state

Day 0

Day 3

Day 7

Day 14

*Champley Test Results of WE43 Braids after Corrosion

*Braids are in expanded state

Figure 7: Minimum Stiffness Analysis of WE43 Braids after Corrosion: Focused on region that obeys Hooke’s Law

* Braid stiffness as measured should increase with displacement

Table 1: Minimum Stiffness of WE43 Braids

<table>
<thead>
<tr>
<th>Samples</th>
<th>Stiffness (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT1</td>
<td>20.2 ± 0.6</td>
</tr>
<tr>
<td>D3T2</td>
<td>14 ± 1</td>
</tr>
<tr>
<td>D7T3</td>
<td>16.1 ± 0.9</td>
</tr>
<tr>
<td>D14T1</td>
<td>18 ± 2</td>
</tr>
</tbody>
</table>

Conclusions:

- Through µCT analysis, the degradation study showed no discernible oxidation
- No increase in diameter after 2 weeks, exemplifies potential for slow expansion over 8 months
- Through tensile testing, minimum stiffness was observed
- No significant increase or decrease in stiffness
- Aligned with visual/physical observations
- No change in mechanical properties aligns with µCT results

Future Directions:

- Repeat study
- Longer degradation study, EDS to determine composition
- Convert linear tensile stiffness to radial compressive stiffness
- Measure resistance against radial deformation of bile duct
- Prolonging degradation
- Fluorination pretreatment
- Dip-coating with polymers (PLA, PCL)

Expansion Mechanism
- Test braid expansion in semi-elastic tube that mimics of bile duct
- Dependence of expansion on degradation time

In Vitro Testing
- Mimic flow behavior of bile duct in degradation study

Works Cited


Acknowledgments

We would like to acknowledge Dr. Orla Wilson, Beth Sliger, and Fort Wayne Metals for their help with this project.