Prediction of Physiological Deterioration and Mortality in Mechanically Ventilated Patients Admitted to the ICU

Andy S. Ding1, Madi Kusmanov1, Morgan Sanchez1, Yunru Chen1, Shreyash Sonthalia1, Timothy Bedard1, Joseph Greenstein2, Raimond L. Winslow1, Pedro Mendez-Tellez2

1 Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
2 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Introduction/Background

- Mechanical ventilation provides adequate gas exchange and reduces the work of breathing in critically ill patients to maintain respiratory function and blood oxygenation.
- Ventilation itself can cause damage to healthy lungs or exacerbate pathology in previously damaged lungs and has been shown to contribute to end-organ dysfunction.
- Prediction of physiological deterioration and mortality in mechanically ventilated patients in the ICU can greatly assist clinical decision-making.

Objective

- To build statistical models for predicting physiological deterioration and mortality in ventilated ICU patients.

Materials and Methods

- Patient data from the Phillips eICU Database were filtered using the following inclusion criteria: age ≥18 years, ICU stay ≥48 hours, pressure- or volume-controlled ventilation, and intubation ≥48 hours.
- Classification methods (logistic regression: LR; random forest: RF; support vector: SVC; XGBoost: XGB) were evaluated with six-fold cross validation.

Results

Figure 1. Overall Physiological Deterioration and Mortality Prediction

Left: Average ROC curves for physiological deterioration prediction. Support vector classification was our highest performing model with an AUC of 0.74 ± 0.03. Right: Average ROC curves for mortality prediction. Support vector classification again was our highest performing model with an AUC of 0.78 ± 0.05.

Figure 2. Organ-Specific Deterioration Prediction

Left: Average ROC curves for pulmonary deterioration prediction. Random forest was our highest performing model with an AUC of 0.79 ± 0.03. Right: Average ROC curves for renal deterioration prediction. Random forest again was our highest performing model with an AUC of 0.74 ± 0.08.

Figure 3. Predictive Model Precision-Recall (PR) Curves

Top: PR curves for physiological deterioration prediction. SVC had the highest average precision of 0.90 ± 0.02. Bottom: PR curves for mortality prediction. LR had the highest average precision of 0.58 ± 0.08.

Conclusion

- Our results demonstrate promising predictive power for physiological deterioration and mortality using statistical learning models.
- These models have the potential to help prevent and manage end-organ dysfunction associated with mechanical ventilation.